1. Section 13.4 [6th ed.: Section 12.4], exercise 22: the “pumping lemma”. Let \(L \) be a regular language accepted by a finite state automaton with \(p \) states. Then any string \(x \in L \) of length at least \(p \) can be written as \(x = uvw \) satisfying the following conditions:

(a) \(|v| \geq 1\),
(b) \(|uv| \leq p\), and
(c) for all nonnegative integers \(i \), \(uv^i w \in L \).

2. Section 13.4 [6th ed.: Section 12.4], exercise 25: Show that the set of palindromes over \(\{0, 1\} \) is not regular, using the pumping lemma. (Hint: consider palindromes of the form \(0^N10^N \).)