announcements

- Hand in Homework 9 now
 – Pick up all old homework and exams now
 – Solutions will be available on-line (username 311 password Turing) by tomorrow.
- Review sessions
 – Saturday and Sunday, 4pm, EEB 125
 – List of Final Exam Topics, Practice Final and sample exam questions linked on the web
 – Bring your questions to the review session!
- Final exam
 – Monday, 2:30-4:20 pm or 4:30-6:20, Kane 210
 – Fill in Catalyst Survey by Sunday, 3pm to choose.

General phenomenon: can’t tell a book by its cover

and you can’t tell what a program does just by its code...

Rice’s Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given it code!

Even harder problems

- With the halting problem, by using the Universal machine (a program interpreter) we can simulate P and input x and always get the true answers correct
 – we can’t be sure about answering false
- For other problems we can always answer false correctly but maybe not the true answers
- There are natural problems where you can’t even do that!
 – The EQUIV problem is an example of this kind of even harder problem

Note: The statement above is not precise, and we didn’t prove it, so this isn’t something you can use on homework or exams
Quick lessons

- Don’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can’t possibly do general computation
- Document your code!!!!
 - there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

CSE 311: Foundations of Computing

Fall 2014
The “5 minute” version

about the course

- From the CSE catalog:
 - CSE 311 Foundations of Computing I (4)
 Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.
- What this course is about:
 - Foundational structures for the practice of computer science and engineering

propositional logic

- Statements with truth values
 - The Washington State flag is red
 - It snowed in Whistler, BC on January 4, 2011.
 - Rick Perry won the Iowa straw poll
 - Space aliens landed in Roswell, New Mexico
 - If \(n \) is an integer greater than two, then the equation \(a^n + b^n = c^n \) has no solutions in non-zero integers \(a, b, \) and \(c \).
 - Propositional variables: \(p, q, r, s, \ldots \)
 - Truth values: \(\top \) for true, \(\bot \) for false
 - Compound propositions

<table>
<thead>
<tr>
<th>Negation (not)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunction (and)</td>
<td>(p \land q)</td>
</tr>
<tr>
<td>Disjunction (or)</td>
<td>(p \lor q)</td>
</tr>
<tr>
<td>Exclusive or</td>
<td>(p \oplus q)</td>
</tr>
<tr>
<td>Implication</td>
<td>(p \rightarrow q)</td>
</tr>
<tr>
<td>Biconditional</td>
<td>(p \leftrightarrow q)</td>
</tr>
</tbody>
</table>
logical equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

\[p \lor \neg p \]
\[p \oplus p \]
\[(p \rightarrow q) \land p \]
\[(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \]

logical equivalence

- \(p \) and \(q \) are logically equivalent iff \(p \leftrightarrow q \) is a tautology
- The notation \(p \equiv q \) denotes \(p \) and \(q \) are logically equivalent

\[\neg (p \land q) \equiv \neg p \lor \neg q \]
\[\neg (p \lor q) \equiv \neg p \land \neg q \]

digital circuits

- Computing with logic
 - \(T \) corresponds to 1 or “high” voltage
 - \(F \) corresponds to 0 or “low” voltage

- Gates
 - Take inputs and produce outputs
 - Several kinds of gates
 - Correspond to propositional connectives
 Only symmetric ones (order of inputs irrelevant)

combinational logic circuits

- Wires can send one value to multiple gates

a simple example: 1-bit binary adder

- **Inputs:** A, B, Carry-in
- **Outputs:** Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{Cout} = \text{B Cin} + \text{A Cin} + \text{A B}
\]
\[
\text{S} = \text{A' B' Cin} + \text{A' B Cin'} + \text{A B' Cin'} + \text{A B Cin}
\]

Truth Tables to Boolean Logic

<table>
<thead>
<tr>
<th>DAY</th>
<th>d2d1d0</th>
<th>L</th>
<th>c0</th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SunS</td>
<td>000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SunL</td>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MonS</td>
<td>001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MonL</td>
<td>001</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TueS</td>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TueL</td>
<td>010</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>WedS</td>
<td>011</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WedL</td>
<td>011</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thu</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FriS</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FriL</td>
<td>101</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sat</td>
<td>110</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
c_3 = (\text{DAY} == \text{SUN and LEC}) \text{ or } (\text{DAY} == \text{MON and LEC})
\]
\[
c_3 = (d2 == 0 \text{ and } d1 == 0 \text{ and } d0 == 0 \text{ and } L == 1) \text{ or } (d2 == 0 \text{ and } d1 == 0 \text{ and } d0 == 1 \text{ and } L == 1)
\]
\[
c_3 = d2' \cdot d1' \cdot d0' \cdot L + d2' \cdot d1' \cdot d0 \cdot L
\]

Boolean Algebra

- **Boolean algebra to circuit design**
- **Boolean algebra**
 - a set of elements B containing \{0, 1\}
 - binary operations \{+ , \cdot \}
 - and a unary operation \{'\}
 - such that the following axioms hold:

 1. the set B contains at least two elements: 0, 1
 2. closure: \(a + b\) is in B
 3. commutativity: \(a + b = b + a\)
 4. associativity: \((a + (b + c)) = (a + b) + c\)
 5. identity: \(a + 0 = a\)
 6. distributivity: \(a + (b \cdot c) = (a + b) \cdot (a + c)\)
 7. complementarity: \(a + a' = 1\)

sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

\[
F = \sum \text{minterm} = A'B'C' + A'BC' + AB'C' + ABC' + ABC
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
<th>F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
F' = A'B'C' + A'BC' + ABC'
\]
Predicate Logic

Predicate or Propositional Function
– A function that returns a truth value, e.g.,
 “x is a cat”
 “x is prime”
 “student x has taken course y”
 “x > y”
 “x + y = z” or Sum(x, y, z)
 “5 < x”
Predicates will have variables or constants as arguments.

English to Predicate Logic
• “Red cats like tofu”
• “Some red cats don’t like tofu”

De Morgan’s laws for Quantifiers

\[
\neg \forall x \ P(x) \equiv \exists x \neg P(x) \\
\neg \exists x P(x) \equiv \forall x \neg P(x)
\]

“There is no largest integer”

\[
\neg \exists x \forall y \ (x \geq y) \\
\equiv \forall x \neg \forall y \ (x \geq y) \\
\equiv \forall x \exists y \neg (x \geq y) \\
\equiv \forall x \exists y \ (y > x)
\]

“There is no largest integer”

“For every integer there is a larger integer”
Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

\[
\begin{align*}
\text{p \land q} & \quad \quad \text{p, q} \\
\therefore \quad p, q & \quad \quad \therefore \quad p \land q \\
\text{p \lor q, \neg p} & \\
\therefore \quad q & \quad \quad \therefore \quad p \lor q, q \lor p \\
\text{p, p \rightarrow q} & \\
\therefore \quad q & \quad \quad \therefore \quad p \rightarrow q \\
\end{align*}
\]

Direct Proof Rule

Not like other rules

Inference rules for quantifiers

\[
\begin{align*}
P(c) \text{ for some } c \\
\therefore \exists x \ P(x) \\
\forall x \ P(x) \\
\therefore \text{P(a) for any a} \\
\text{“Let a be anything”…P(a)} \\
\therefore \exists x \ P(x) \\
\exists x \ P(x) \\
\therefore \text{P(c) for some special** c} \\
\end{align*}
\]

** By special, we mean that c is a name for a value where P(c) is true. We can’t use anything else about that value, so c has to be a NEW variable!

Even and odd

Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers

- Prove: “The square of every odd number is odd”

English proof of: \(\forall x \ (\text{Odd}(x) \rightarrow \text{Odd}(x^2)) \)

Let x be an odd number.

Then \(x=2k+1 \) for some integer k (depending on x)

Therefore \(x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1 \).

Since \(2k^2+2k \) is an integer, \(x^2 \) is odd.
Definitions

- A and B are *equal* if they have the same elements
 \[A = B \equiv \forall x (x \in A \leftrightarrow x \in B) \]
- A is a *subset* of B if every element of A is also in B
 \[A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B) \]
- Note: \((A = B) \equiv (A \subseteq B) \land (B \subseteq A)\)

Set Operations

<table>
<thead>
<tr>
<th>Union</th>
<th>Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \cup B = { x : (x \in A) \lor (x \in B) })</td>
<td>(A \cap B = { x : (x \in A) \land (x \in B) })</td>
</tr>
<tr>
<td>Set Difference</td>
<td>Symmetric Difference</td>
</tr>
<tr>
<td>(A \setminus B = { x : (x \in A) \land (x \notin B) })</td>
<td>(A \oplus B = { x : (x \in A) \oplus (x \in B) })</td>
</tr>
<tr>
<td>Complement</td>
<td>(\overline{A} = { x : x \notin A }) (with respect to universe U)</td>
</tr>
</tbody>
</table>

Empty Set, Power set, Cartesian Product

- **Power set** of a set \(A = \) set of all subsets of \(A\)
 \[\mathcal{P}(A) = \{ B : B \subseteq A \} \]
 e.g. Days = \{M, W, F\}
 \[\mathcal{P}(\text{Days}) = \{ \emptyset,\{M\},\{W\},\{F\},\{M,W\},\{W,F\},\{M,F\},\{M,W,F\} \} \]
 e.g. \(\mathcal{P}(\emptyset) = \) ?

- **Cartesian Product** \(A \times B = \) \(\{ (a,b) : a \in A, b \in B \}\)

Bitwise Operations

<table>
<thead>
<tr>
<th>Java:</th>
<th>(z = x \mathbin{\text{&&}} y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(01010101)</td>
<td>(00101010)</td>
</tr>
<tr>
<td>(00110111)</td>
<td>(00001111)</td>
</tr>
<tr>
<td>(01111111)</td>
<td>(00001010)</td>
</tr>
<tr>
<td>(01011010)</td>
<td>(01011010)</td>
</tr>
</tbody>
</table>
One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $m \oplus K \oplus K$
- Eve cannot figure out m from C unless she can guess K

division theorem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r$.

$$q = a \div d \quad r = a \mod d$$

Arithmetic, mod 7

- $a +_7 b = (a + b) \mod 7$
- $a \times_7 b = (a \times b) \mod 7$

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

modular arithmetic

Let a and b be integers, and m be a positive integer. We say a is congruent to b modulo m if m divides $a - b$. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.
Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose \(0 \leq x < 2^{n-1} \),
\(x \) is represented by the binary representation of \(x \)

Suppose \(0 \leq x \leq 2^{n-1} \),
\(-x \) is represented by the binary representation of \(2^n - x \)

Key property: Twos complement representation of any number \(y \) is equivalent to \(y \mod 2^n \) so arithmetic works mod \(2^n \)

For \(n = 8 \):

\[
99 = 64 + 32 + 2 + 1
\]

\[
18 = 16 + 2
\]

99: 0110 0011
-18: 1110 1110

hashing

- Map values from a large domain, 0...M-1 in a much smaller domain, 0...n-1
- Index lookup
- Test for equality
- Hash(\(x \)) = \(x \mod p \)
 - (or Hash(\(x \)) = (ax + b) \mod p)
- Often want the hash function to depend on all of the bits of the data
 - Collision management

modular exponentiation mod 7

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>a</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Repeated Squaring – small and fast

Since \(a \mod m \equiv a \mod m \) for any \(a \)

we have \(a^2 \mod m = (a \mod m)^2 \mod m \)

and \(a^4 \mod m = (a^2 \mod m)^2 \mod m \)

and \(a^8 \mod m = (a^4 \mod m)^2 \mod m \)

and \(a^{16} \mod m = (a^8 \mod m)^2 \mod m \)

and \(a^{32} \mod m = (a^{16} \mod m)^2 \mod m \)

Can compute \(a^k \mod m \) for \(k=2^i \) in only \(i \) steps
Primality

An integer p greater than 1 is called \textit{prime} if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called \textit{composite}.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

\[
\begin{align*}
48 &= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
45,523 &= 45,523 \\
321,950 &= 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
1,234,567,890 &= 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{align*}
\]

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:
Suppose that there are only a finite number of primes: p_1, p_2, \ldots, p_n

GCD and Factoring

\[
\begin{align*}
a &= 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200 \\
b &= 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750
\end{align*}
\]

\[
\text{GCD}(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}
\]

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Euclid's Algorithm

\[
\text{GCD}(x, y) = \text{GCD}(y, x \mod y)
\]

\[
\text{int GCD}(\text{int } a, \text{int } b)\{ \begin{array}{l}
/* a >= b, b > 0 */ \\
\text{int } \text{tmp}; \\
\text{while } (b > 0) \{ \\
\quad \text{tmp} = a \% b; \\
\quad a = b; \\
\quad b = \text{tmp}; \\
\} \\
\text{return } a;
\end{array}
\}
\]

Example: GCD(660, 126)
Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find s, t such that $\gcd(a, b) = sa + tb$

 e.g. $\gcd(35, 27)$:

 35 = 1 \cdot 27 + 8
 27 = 3 \cdot 8 + 3
 8 = 2 \cdot 3 + 2
 3 = 1 \cdot 2 + 1
 2 = 2 \cdot 1 + 0

• Substitute back from the bottom

$1 = 3 - 1 \cdot 2 = 3 - 1(8 - 2 \cdot 3) = (-1) \cdot 8 + 3 \cdot 3$

$= (-1) \cdot 8 + 3(27 - 3 \cdot 8) = 3 \cdot 27 + (-10) \cdot 8$

$= 3 \cdot 27 + (-10) \cdot (35 - 1 \cdot 27) = (-10) \cdot 35 + 1 \cdot 27$

Solving Modular Equations

Solving $ax \equiv b \pmod{m}$ for unknown x when $\gcd(a, m) = 1$.

1. Find s such that $sa + tm = 1$
2. Compute $a^{-1} = s \pmod{m}$, the multiplicative inverse of a modulo m
3. Set $x = (a^{-1} \cdot b) \pmod{m}$

Mathematical Induction

\[
\begin{align*}
P(0) & \\
\forall k \ P(k) & \rightarrow \ P(k + 1) \\
\therefore \ & \forall n \ P(n)
\end{align*}
\]

1. Prove $P(0)$ Base Case
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true Inductive Hypothesis
4. ...
5. Prove $P(k + 1)$ is true Inductive Step
6. $P(k) \rightarrow P(k + 1)$ Direct Proof Rule
7. $\forall k \ (P(k) \rightarrow P(k + 1))$ Intro \forall from 2-6
8. $\forall n \ P(n)$ Induction Rule 1&7

Conclusion

strong induction

\[
\begin{align*}
P(0) & \\
\forall k \ ((P(0) \land P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k + 1)) \\
\therefore \ & \forall n \ P(n)
\end{align*}
\]

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k + 1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction
5 Steps To Inductive Proofs In English

Proof:
1. “We will show that P(n) is true for every n ≥ 0 by Induction.”
2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:”
 Assume P(k) is true for some arbitrary integer k ≥ 0”
4. “Inductive Step:” Want to prove that P(k+1) is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are using it. (Don’t assume P(k+1) !!)
5. “Conclusion: Result follows by induction”

Strong Induction

\[
P(0) \\
\forall k \left((P(0) \land P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k+1)\right) \\
\therefore \forall n P(n) \\
\text{Follows from ordinary induction applied to} \\
Q(n) = P(0) \land P(1) \land P(2) \land \cdots \land P(n)
\]

Recursive definitions of functions

1. By induction we will show that P(n) is true for every n ≥ 0
2. Base Case: Prove P(0)
3. Inductive Hypothesis:
 Assume that for some arbitrary integer k ≥ 0,
 P(j) is true for every j from 0 to k
4. Inductive Step:
 Prove that P(k+1) is true using the Inductive Hypothesis (that P(j) is true for all values \leq k)
5. Conclusion: Result follows by induction
Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by:
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string)
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Function Definitions on Recursively Defined Sets

Length:
\[
\text{len}(\varepsilon) = 0;
\text{len}(wa) = 1 + \text{len}(w); \text{ for } w \in \Sigma^*, a \in \Sigma
\]

Reversal:
\[
\varepsilon^R = \varepsilon \quad (wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma
\]

Concatenation:
\[
x \cdot \varepsilon = x \text{ for } x \in \Sigma^*
\]
\[
x \cdot wa = (x \cdot w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma
\]

Rooted Binary Trees

- Basis: is a rooted binary tree
- Recursive step:
 - If T_1 and T_2 are rooted binary trees,
 - then so is: $T_1 \mid T_2$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

- Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step
- Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
- Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis
- Conclude that $\forall x \in S, P(x)$
Function Definitions on Recursively Defined Sets

Length:
\[\text{len}(\varepsilon) = 0 \]
\[\text{len}(wa) = 1 + \text{len}(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, \ a \in \Sigma \]

Concatenation:
\[x \cdot \varepsilon = x \text{ for } x \in \Sigma^* \]
\[x \cdot wa = (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma \]

Number of c's in a string:
\[\#_c(\varepsilon) = 0 \]
\[\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c \]

Regular Expressions

Regular expressions over \(\Sigma \)

• Basis:
 \(\emptyset, \varepsilon \) are regular expressions
 \(a \) is a regular expression for any \(a \in \Sigma \)

• Recursive step:
 – If \(A \) and \(B \) are regular expressions then so are:
 \((A \cup B) \)
 \((AB) \)
 \(A^* \)

Examples

• \(0^* \)
• \(0^*1^* \)
• \((0 \cup 1)^* \)
• \((0^*1^*)^* \)
• \((0 \cup 1)^* 0110 (0 \cup 1)^* \)
• \((0 \cup 1)^* (0110 \cup 100)(0 \cup 1)^* \)
• \((00 \cup 11)^* (01010 \cup 10001)(0 \cup 1)^* \)
Context-Free Grammars

Example:

\[S \rightarrow 0S | 1S1 | 0 | 1 | \varepsilon \]

Example:

\[S \rightarrow 0S | S1 | \varepsilon \]

Grammar for \(\{0^n1^n: n \geq 0\} \)
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example:

\[S \rightarrow (S) | SS | \varepsilon \]

building precedence in simple arithmetic expressions

• \(E \) – expression (start symbol)
• \(T \) – term
• \(F \) – factor
• \(I \) – identifier
• \(N \) - number

\[
\begin{align*}
E & \rightarrow T | E + T \\
T & \rightarrow F | F \times T \\
F & \rightarrow (E) | I | N \\
I & \rightarrow x | y | z \\
N & \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\end{align*}
\]

definitions for relations

Let A and B be sets,
A binary relation from A to B is a subset of \(A \times B \)

Let A be a set,
A binary relation on A is a subset of \(A \times A \)

Let \(R \) be a relation on A

- \(R \) is reflexive iff \((a,a) \in R\) for every \(a \in A\)
- \(R \) is symmetric iff \((a,b) \in R\) implies \((b,a) \in R\)
- \(R \) is antisymmetric iff \((a,b) \in R\) and \(a \neq b\) implies \((b,a) \notin R\)
- \(R \) is transitive iff \((a,b) \in R\) and \((b,c) \in R\) implies \((a,c) \in R\)
Combining Relations

Let R be a relation from A to B. Let S be a relation from B to C. The **composition** of R and S, $S \circ R$, is the relation from A to C defined by:

\[
S \circ R = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}
\]

Intuitively, a pair is in the composition if there is a “connection” from the first to the second.

Relations

- $(a, b) \in \text{Parent}$: b is a parent of a
- $(a, b) \in \text{Sister}$: b is a sister of a
- Aunt = Sister \circ Parent
- Grandparent = Parent \circ Parent

- $R^2 = R \circ R = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in R\}$
- $R^0 = \{(a, a) \mid a \in A\}$
- $R^1 = R$
- $R^{n+1} = R^n \circ R$

n-ary relations

Let A_1, A_2, \ldots, A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times \ldots \times A_n$.

matrix representation for relations

Relation R on $A = \{a_1, \ldots, a_p\}$

\[
m_{ij} = \begin{cases}
1 & \text{if } (a_i, a_j) \in R, \\
0 & \text{if } (a_i, a_j) \notin R.
\end{cases}
\]

\[
\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3)\}
\]

\[
\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}
\]
Directed Graph Representation (Digraph)

\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e), (d, e) \}

Connectivity In Graphs

Let \(R \) be a relation on a set \(A \). There is a path of length \(k \) from \(a \) to \(b \) if and only if \((a, b) \in R^k \).

Two vertices in a graph are connected iff there is a path between them.

Let \(R \) be a relation on a set \(A \). The connectivity relation \(R^* \) consists of the pairs \((a,b) \) such that there is a path from \(a \) to \(b \) in \(R \).

\[
R^* = \bigcup_{k=0}^{\infty} R^k
\]

Note: The Rosen text uses the wrong definition of this quantity. What the text defines (ignoring \(k=0 \)) is usually called \(R^* \).

Finite State Machines

- **States**
- **Transitions on inputs**
- **Start state and final states**
- The language recognized by a machine is the set of strings that reach a final state

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_0)</td>
<td>(s_1)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_0)</td>
<td>(s_2)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_0)</td>
<td>(s_3)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_3)</td>
<td>(s_3)</td>
</tr>
</tbody>
</table>

accept strings with odd # of 1's and odd # of 0's
The beginning versus the end

product construction

– Combining FSMs to check two properties at once
 New states record states of both FSMs

State Machines with Output

“Tug-of-war”

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>(L)</td>
<td>(s_1)</td>
</tr>
<tr>
<td>(S_2)</td>
<td>(R)</td>
<td>(s_2)</td>
</tr>
<tr>
<td>(S_3)</td>
<td>(L)</td>
<td>(s_3)</td>
</tr>
<tr>
<td>(S_4)</td>
<td>(R)</td>
<td>(s_4)</td>
</tr>
</tbody>
</table>

Input Output

State L R

Beep

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar
Adding additional "unexpected" transitions

Finite State Machines with output at states

State minimization example

Put states into groups based on their outputs (or whether they are final states or not)
another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state.

nondeterministic finite automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 - Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state.

Building an NFA from a Regular Expression

$(01 \cup 1)^*0$

Accepts strings with a 1 three positions from the end of the string.
B = (binary palindromes) can’t be recognized by any DFA

Consider the infinite set of strings
\[S = \{1, 01, 001, 0001, 00001, \ldots \} = \{0^n1 : n \geq 0\} \]
Suppose we are given an arbitrary DFA M.
- Goal: Show that some \(x \in B \) and some \(y \not\in B \) both must end up at the same state of M.

Since S is infinite we know that two different strings in S must land in the same state of M, call them \(O^i1 \) and \(O^j1 \) for \(i \neq j \).

- That also must be true for \(O^i1z \) and \(O^j1z \) for any \(z \in \{0,1\}^* \)!
In particular, with \(z = 0^i \) we get that \(O^i10^i \) and \(O^j10^i \) end up at the same state of M. Since \(O^i10^i \in B \) and \(O^j10^i \not\in B \) (because \(i \neq j \)) M does not recognize B. \(\therefore \) no DFA can recognize B.

Showing a Language L is not regular

1. Find an infinite set \(S = \{s_0, s_1, \ldots, s_n, \ldots \} \) of string prefixes that you think will need to be remembered separately
2. “Let M be an arbitrary DFA. Since S is infinite and M is finite state there must be two strings \(s_i \) and \(s_j \) in S for some \(i \neq j \) that end up at the same state of M.”
 Note: You don’t get to choose which two strings \(s_i \) and \(s_j \)
3. Find a string t (typically depending on \(s_i \) and/or \(s_j \)) such that \(s_it \) is in L, and \(s_it \) is not in L or \(s jt \) is not in L and \(s jt \) is in L.
4. “Since \(s_i \) and \(s_j \) both end up at the same state of M, and we appended the same string t, both \(s_it \) and \(s jt \) end at the same state of M. Since \(s_it \in L \) and \(s jt \not\in L \), M does not recognize L.”
5. “Since M was arbitrary, no DFA recognizes L.”
Pattern Matching DFA

Pattern \(p = x \ y \ x \ y \ x \ y \ x \ y \ x \ x \ x \)

Languages and Machines!

- Are there things Java can't do?
 - Java
 - {001, 10, 12}

Cardinality

- A set \(S \) is **countable** iff we can write it as \(S = \{s_1, s_2, s_3, \ldots\} \) indexed by \(\mathbb{N} \)
- Set of integers is countable
 - \(\{0, 1, -1, 2, -2, 3, -3, 4, \ldots\} \)
- Set of rationals is countable
 - "dovetailing"
- \(\Sigma^* \) is countable
 - \(\{0,1\}^* = \{0,1,00,01,10,11,000,001,010,011,100,101,\ldots\} \)
- Set of all (Java) programs is countable

Flipped Diagonal Number \(D \)

<table>
<thead>
<tr>
<th>Flipping Rule:</th>
<th>Flipping Rule:</th>
<th>Flipping Rule:</th>
<th>Flipping Rule:</th>
<th>Flipping Rule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>If digit is 5, make it 1</td>
<td>If digit is not 5, make it 5</td>
<td>If digit is 5, make it 1</td>
<td>If digit is not 5, make it 5</td>
<td>If digit is 5, make it 1</td>
</tr>
<tr>
<td>(D = 0.)</td>
<td>(1)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(r_1)</td>
<td>0.</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(r_2)</td>
<td>0.</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(r_3)</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(r_4)</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(r_5)</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(r_6)</td>
<td>0.</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(r_7)</td>
<td>0.</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>(r_8)</td>
<td>0.</td>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
The Halting Problem

Given: - CODE(P) for any program P
 - input x

Output: true if P halts on input x
 false if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem
“The halting problem is undecidable”

Some possible inputs x

| P | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>01</td>
<td>11</td>
<td>01</td>
<td>11</td>
<td>00</td>
<td>01</td>
<td>11</td>
<td>10</td>
<td>00</td>
<td>1 ...</td>
</tr>
<tr>
<td>P_2</td>
<td>1 10</td>
<td>10</td>
<td>01</td>
<td>11</td>
<td>01</td>
<td>11</td>
<td>10</td>
<td>00</td>
<td>1 ...</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>10</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>11</td>
<td>10</td>
<td>01</td>
<td>1 ...</td>
</tr>
<tr>
<td>P_4</td>
<td>00</td>
<td>11</td>
<td>01</td>
<td>11</td>
<td>01</td>
<td>11</td>
<td>10</td>
<td>00</td>
<td>1 ...</td>
<td></td>
</tr>
<tr>
<td>P_5</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>11</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>1 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_6</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
<td>01</td>
<td>1 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_7</td>
<td>01</td>
<td>11</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>11</td>
<td>10</td>
<td>00</td>
<td>1 ...</td>
<td></td>
</tr>
<tr>
<td>P_8</td>
<td>01</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
<td>1 ...</td>
<td></td>
</tr>
<tr>
<td>P_9</td>
<td>. .</td>
</tr>
<tr>
<td>P_10</td>
<td>. .</td>
</tr>
</tbody>
</table>

D behaves like flipped diagonal

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

But first another hard halting-related problem

Halting Problem:
Given: - CODE(P) for any program P
 - input x

Output: true if P halts on input x
 false if P does not halt on input x

HaltsNoInput Problem:
Given: - CODE(Q) for any program Q

Output: true if Q halts without reading any input
 false if Q reads input or runs forever without reading any input.

```java
public static void D(int x) {
    if (H(x, x) == true) {
        while (true); /* don't halt */
    } else {
        return; /* halt */
    }
}
```
Suppose that hypothetical program \(A \) solves \textit{HaltsNoInput} problem. Combine with \texttt{Hardcoder}:

\[
\text{CODE}(P) \quad x
\]

\[
\text{Hardcoder}
\]

\[
\text{H'} \quad \text{outputs true on inputs} \quad \text{CODE}(P) \quad \text{and} \quad x
\]

iff \(A \) outputs true on input \text{CODE}(Q) \quad \text{by diagram}

iff \(Q() \) reads no input and (always) halts \quad \text{by property of} \ A

iff \(P(x) \) halts \quad \text{by definition of} \text{Hardcoder}

If \(A \) existed then \(H' \) would solve the Halting Problem: Impossible

\[
\text{SHOWING THERE IS NO PROGRAM SOLVING} \text{\textit{HALTSNOINPUT}}
\]

\[
\text{SHOWING } \text{\textit{EQUIV}} \text{ IS UNDECIDABLE}
\]

Consider the set:

\[
\text{\textit{EQUIV}} = \{(\text{\text{CODE}}(P), \text{\text{CODE}}(R)) : P, R \text{ are programs, } P(x) = R(x) \text{ for all inputs } x\}
\]

\[
\text{\text{CODE}}(Q)
\]

Question: Does \(Q() \) halt?

Step 1: Construct \(P \):

\[
\text{public static boolean } P() \text{ } \{ \text{return true;} \}
\]

Step 2: Construct \(R \):

\[
\begin{align*}
\text{Step a: Replace return type of } Q \text{ with boolean} \\
\text{Step b: Replace all return values with true} \\
\text{Step c: Add "return true;" to the end of the program}
\end{align*}
\]

Call this program \(R \)

\[
\text{CODE}(P), \text{CODE}(R)
\]

Combined program outputs \(\text{true} \) \textit{true} \textit{true} \textit{true} iff \(P \) and \(R \) are equivalent \text{by diagram}

iff \(R \) always returns \(\text{true} \) \quad \text{by defn of} \ P

iff \(Q \) halts \quad \text{by construction of} \ R \text{ from} \ Q

\[
\text{TURING MACHINES}
\]

\[
\text{\textbf{Church-Turing Thesis}}
\]

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

\[
\begin{align*}
\text{\textbullet \ Evidence} \\
\text{-- Intuitive justification} \\
\text{-- Huge numbers of equivalent models to TM's based on radically different ideas}
\end{align*}
\]

\[
\text{WHAT IS A TURING MACHINE?}
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]

\[
\text{\textsc{EQUIV}}
\]

\[
\text{\textsc{CODE}}(Q)
\]

\[
\text{\textsc{ANS}}
\]
what is a turing machine?

Turing's big idea: machines as data

- Original Turing machine definition
 - A different “machine” M for each task
 - Each machine M is defined by a finite set of possible operations on finite set of symbols M has a finite description as a sequence of symbols, its “code” denoted $<M>$

- You already are used to this idea with the notion of the program code or text but this was a new idea in Turing’s time.

Turing’s idea: a Universal Turing Machine

- A Turing machine interpreter U
 - On input $<M>$ and its input x, U outputs the same thing as M does on input x
 - At each step it decodes which operation M would have performed and simulates it.

- One Turing machine is enough
 - Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design
General phenomenon: can’t tell a book by its cover

and you can’t tell what a program does just by its code...

Rice’s Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given its code!

Note: The statement above is not precise, and we didn’t prove it, so this isn’t something you can use on homework or exams

Quick lessons

• Don’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 – truly safe languages can’t possibly do general computation

• Document your code!!!!
 – there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!