Review:

- We have seen that
 - The set of all (Java) programs is countable
 - The set of all functions $f : \mathbb{N}_+ \rightarrow \{0,1,...,9\}$ is not countable

- Let’s review that second proof
 - Consider any listing of such functions $f_1, f_2, f_3, f_4, ...$

Supposed listing of functions: $\mathbb{N}_+ \rightarrow \{0,1,...,9\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>f_3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>f_5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_6</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_7</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_8</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Flipped Diagonal Function $D: \mathbb{N}_+ \rightarrow \{0,1,...,9\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>5</td>
<td>$\bar{1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>f_3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>f_5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_6</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_7</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>f_8</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Flipping Rule:

- If $f_n(n)$ is 5, make $D(n)=1$
- If $f_n(n)$ is not 5, make $D(n)=5$
Flipped Diagonal Function $D: \mathbb{N}_+ \rightarrow \{0,1,...,9\}$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For all n, we have $D \neq f_n$ since $D(n) \neq f_n(n)$

\Rightarrow list was incomplete

$\Rightarrow \{ f \mid f : \mathbb{N}_+ \rightarrow \{0,1,...,9\} \}$ is not countable

Non-computable functions

- We have seen that
 - The set of all (Java) programs is countable
 - The set of all functions $f : \mathbb{N}_+ \rightarrow \{0,1,...,9\}$ is not countable

- So...
 - There must be some function $f : \mathbb{N}_+ \rightarrow \{0,1,...,9\}$ that is not computable by any program!

Back to the Halting Problem

- Suppose that there is a program H that computes the answer to the Halting Problem

- We will build a table with a row for each program (just like we did for uncountability of reals)

- If the supposed program H exists then the D program we constructed as before will exist and so have a row in the table

- We will see that D must have entries like the “flipped diagonal”
 - D can’t possibly be in the table.
 - Only assumption was that H exists. That must be false.

Some possible inputs x

<table>
<thead>
<tr>
<th>$<$P$>$ entry is shorthand for CODE(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<$P$>$</td>
</tr>
<tr>
<td>P_1</td>
</tr>
<tr>
<td>P_2</td>
</tr>
<tr>
<td>P_3</td>
</tr>
<tr>
<td>P_4</td>
</tr>
<tr>
<td>P_5</td>
</tr>
<tr>
<td>P_6</td>
</tr>
<tr>
<td>P_7</td>
</tr>
<tr>
<td>P_8</td>
</tr>
<tr>
<td>P_9</td>
</tr>
</tbody>
</table>
Some possible inputs x

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.

- D behaves like flipped diagonal.

Function $D(x)$:

- if $H(x, x) == \text{true}$ then
 - while (true); /* loop forever */
- else
 - return; /* do nothing and halt */
- endif

Recall: code for D assuming subroutine H that solves the halting problem.

- If D existed it would have a row different from every row of the table.
- D can’t be a program so H cannot exist!
More than just halting is hard

- We showed
 - if the hypothetical program H deciding the Halting Problem existed, then we could use it to build a program D that cannot possibly exist
 - Since D doesn’t exist, program H cannot exist

- We will use similar approach to show that other important problems are hard
 - if there is a hypothetical program A solving one of these problems, then we could use it to build a program H solving the Halting Problem
 - Since H doesn’t exist, A cannot exist

But first another hard halting-related problem

Halting Problem:

- **Given:** - CODE(P) for any program P
 - input x
- **Output:**
 - true if P halts on input x
 - false if P does not halt on input x

HaltsNoInput Problem:

- **Given:** - CODE(Q) for any program Q
- **Output:**
 - true if Q halts without reading any input
 - false if Q reads input or runs forever without reading any input.
Key idea: Hardcoding an Input

INPUT is “potato”

```java
public String P(String y) {
    return new String(
        Arrays.sort(y.toCharArray()
    );
}
```

Q: Version of P with “hardcoded” input:

```java
public String Q() {
    return new String(
        Arrays.sort("potato".toCharArray()
    );
}
```

Q() behaves the same as P("potato"), except that it doesn’t read any input.

Can write a program Hardcoder that, given CODE(P) and an input string x, produces CODE(Q)

Showing there is no program solving HaltsNoInput

Suppose that hypothetical program A solves HaltsNoInput problem.

```latex
\begin{align*}
\text{A outputs true} & \quad \text{iff Q() reads no input} \\
\text{and (always) halts}
\end{align*}
```

Some notation: Decision problems as sets

Every decision problem can be written as asking about membership in a set.

If a program “decides” a set, then it must output true on all inputs in the set and false on all inputs not in the set.

Halt =\{(CODE(P),x) : P is a program that halts on input x\}

HaltsNoInput =\{CODE(Q) : Q is a program that halts without reading any input\}
Convenient pictures

- Rather than continue to come up with more names like H and A for our hypothetical programs...
- Given a decision problem SET we use the following picture to denote any hypothetical program that solves decision problem SET with ANS denoting its output.

![Diagram of SET with ANS]

Showing HELLO is Undecidable

Consider the set:

HELLO = \{CODE(R) : R is a program that reads no input, prints “Hello”, and always halts\}

CODE(Q)

Question: Does Q() halt?

Step 1: Remove all System.out.print/println statements from CODE(Q).
Step 2: Append System.out.println(“Hello”) at the end of the program code.

Call the new program R

CODE(R)

Question: Does R() print “Hello” and halt?

Answering with ANS would solve HaltsNoInput!

A Decision Problem We Can Solve

REGEQUIV = \{(R₁, R₂) : R₁ and R₂ are equivalent regexps\}

In this case the hypothetical program does exist:

- Convert both to NFAs then DFAs, minimize and compare

![Diagrams of REGEQUIV with examples]

Showing EQUIV is Undecidable

Consider the set:

EQUIV = \{(CODE(P), CODE(R)) : P, R are programs, P(x) = R(x) for all inputs x\}

CODE(Q)

Question: Does Q() halt?

Step 1: Construct P:
  ```java
  public static boolean P() {return true;}
  ```
Step 2: Construct R:
  ```java
  Step a: Replace return type of Q with boolean
  Step b: Replace all return values with true
  Step c: Add “return true;” to the end of the program
  Call this program R
  ```

CODE(P),CODE(R)

Question: Are P and R Equivalent?

Answering with ANS would solve HaltsNoInput!
Pitfalls

- Not every problem on programs is undecidable! Which of these is decidable?

- Input \texttt{CODE(P) and x}
 Output: \texttt{true} if \texttt{P} prints “ERROR” on input \texttt{x}
 after less than 100 steps
 \texttt{false} otherwise

- Input \texttt{CODE(P) and x}
 Output: \texttt{true} if \texttt{P} prints “ERROR” on input \texttt{x}
 after more than 100 steps
 \texttt{false} otherwise