Review:

• We have seen that
 – The set of all (Java) programs is countable
Supposed listing of functions: $\mathbb{N}_+ \rightarrow \{0,1,\ldots,9\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>f_3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_6</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_7</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>f_8</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Flipped Diagonal Function \(D: \mathbb{N}_+ \rightarrow \{0,1,\ldots,9\} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>f_3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>f_4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>f_5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>f_6</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_7</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>f_8</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Flipping Rule:

- If \(f_n(n) \) is 5, make \(D(n) = 1 \)
- If \(f_n(n) \) is not 5, make \(D(n) = 5 \)
Flipped Diagonal Function $D: \mathbb{N}_+ \rightarrow \{0,1,\ldots,9\}$

For all n, we have $D \neq f_n$ since $D(n) \neq f_n(n)$.

\Rightarrow list was incomplete

$\Rightarrow \{f \mid f: \mathbb{N}_+ \rightarrow \{0,1,\ldots,9\}\}$ is not countable.
Non-computable functions

• We have seen that
 – The set of all (Java) programs is countable
 – The set of all functions \(f : \mathbb{N} \rightarrow \{0,1,...,9\} \) is not countable

• So...
 – There must be some function \(f : \mathbb{N} \rightarrow \{0,1,...,9\} \) that is not computable by any program!
Back to the Halting Problem

• Suppose that there is a program H that computes the answer to the Halting Problem

• We will build a table with a row for each program (just like we did for uncountability of reals)

• If the supposed program H exists then the D program we constructed as before will exist and so have a row in the table

• We will see that D must have entries like the “flipped diagonal”
 – D can’t possibly be in the table.
 – Only assumption was that H exists. That must be false.
Some possible inputs \(x \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(C(P_1))</th>
<th>(C(P_2))</th>
<th>(C(P_3))</th>
<th>(C(P_4))</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(P_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_6)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_7)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_8)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P)</td>
<td>(x)</td>
<td>(P)</td>
<td>(x)</td>
<td>(P)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

\[(P, x) \text{ entry is 1 if program } P \text{ halts on input } x \]

\[\text{ and 0 if it runs forever} \]

\(C(P) \) is shorthand for \(\text{CODE}(P) \).
Some possible inputs x

<table>
<thead>
<tr>
<th>Programs P_i</th>
<th>$C(P_1)$</th>
<th>$C(P_2)$</th>
<th>$C(P_3)$</th>
<th>$C(P_4)$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_9</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.
recall: code for D assuming subroutine H that solves the halting problem

• Function $D(x)$:

 if ($H(x,x)==true$) {
 while (true); /* loop forever */
 }

 else {
 return; /* do nothing and halt */
 }
<table>
<thead>
<tr>
<th>programs P</th>
<th>(<P_1>)</th>
<th>(<P_2>)</th>
<th>(<P_3>)</th>
<th>(<P_4>)</th>
<th>(<P_5>)</th>
<th>(<P_6>)</th>
<th>.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(P_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_6)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_7)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_8)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

\((P,x)\) entry is 1 if program \(P\) halts on input \(x\) and 0 if it runs forever.

Some possible inputs \(x\):

\(<P_1>\) <\(P_2>\) <\(P_3>\) <\(P_4>\) <\(P_5>\) <\(P_6>\)

\(D\) behaves like flipped diagonal.
recall: code for \textbf{D} assuming subroutine \textbf{H} that solves the halting problem

• Function \textbf{D}(x):

\begin{verbatim}
if (H(x,x)==true) {
 while (true); /* loop forever */
}
else {
 return; /* do nothing and halt */
}
\end{verbatim}

• If \textbf{D} existed it would have a row different from every row of the table

– \textbf{D} can’t be a program so \textbf{H} cannot exist!
Diagram: Using Hypothetical Program H to build D

CODE(P) x

true false

```
String sql = getStatement();
resultSet = statement.executeQuery(sql);
if (resultSet.next()) {
    result = true;
    setstoreId(resultSet.getInt("storeId"));
    storeDescription = resultSet.getString("storeDescription");
    storeType = resultSet.getString("storeType");
}
```
Diagram: Using Hypothetical Program H to build D

```
while(true);
/*loop forever*/
return; /*halt*/
```
More than just halting is hard

• We showed
 – if the hypothetical program H deciding the Halting Problem existed, then we could use it to build a program D that cannot possibly exist
 – Since D doesn’t exist, program H cannot exist

• We will use similar approach to show that other important problems are hard
 – if there is a hypothetical program A solving one of these problems, then we could use it to build a program H solving the Halting Problem
 – Since H doesn’t exist, A cannot exist
But first another hard halting-related problem

Halting Problem:

Given: - CODE(P) for any program P
- input x

Output:
true if P halts on input x
false if P does not halt on input x

HaltsNoInput Problem:

Given: - CODE(Q) for any program Q

Output:
true if Q halts without reading any input
false if Q reads input or runs forever.
Key idea: Hardcoding an Input

INPUT is “potato”

public String P(String y) {
 return new String(
 Arrays.sort(y.toCharArray());
)
}

public String Q() {
 return new String(
 Arrays.sort("potato".toCharArray());
)
}

Q: Version of P with “hardcoded” input:

Q() behaves the same as P("potato"), except that it doesn’t read any input.

Can write a program Hardcoder that, given CODE(P) and an input string x, produces CODE(Q)
Suppose that hypothetical program A solves HaltsNoInput problem. Combine with Hardcoder:

- If A existed then H' would solve the Halting Problem: Impossible

H' outputs true on inputs $\text{CODE}(P)$ and x iff A outputs true iff $Q()$ reads no input and (always) halts iff $P(x)$ halts
Some notation: Decision problems as sets

Every decision problem can be written as asking about membership in a set.

If a program “decides” a set, then it must output true on all inputs in the set and false on all inputs not in the set.

$\text{Halt} = \{(\text{CODE}(P), x) : P \text{ is a program that halts on input } x\}$

$\text{HaltsNoInput} = \{\text{CODE}(Q) : Q \text{ is a program that halts without reading any input}\}$
Convenient pictures

- Rather than continue to come up with more names like H and A for our hypothetical programs...
- Given a decision problem SET we use the following picture to denote any hypothetical program that solves decision problem SET with ANS denoting its output.
Showing **HELLO** is Undecidable

Consider the set:

HELLO = \{CODE(R) : R is a program that reads no input, prints “Hello”, and always halts\}

Question: Does Q() halt?

Step 1: Remove all `System.out.print`/`println` statements from CODE(Q).

Step 2: Append `System.out.println("Hello")` at the end of the program code.

Call the new program R

Question: Does R() print “Hello” and halt?

Answering with ANS would solve HaltsNoInput!
Showing **HELLO** is Undecidable (Full Proof)

Suppose for contradiction that HELLO is decidable. Then, there is a program HLO(CODE(R)) that returns true when CODE(R) ∈ HELLO and false otherwise.

Consider an arbitrary program Q. We will now construct a program that decides if Q ∈ HaltsNoInput. Define a new program R by applying the following transformations to Q’s code:

1. Step 1: Remove all System.out.print/println statements from CODE(Q).
2. Step 2: Append System.out.println(“Hello”) at the end of the code (and before all return statements).

Then, we can create the following program:

```
HNI(Q) { return HLO(R); }
```

We claim HNI solves HaltsNoInput. Suppose HNI(Q) = true. Then, it should be the case that Q halts. Note that HLO(R) must be true by definition of HNI. So, R ∈ HELLO; it follows that R reads no input, prints “Hello”, and halts. Note that Q also reads no input. Furthermore, Step 2 ensures that Q prints “Hello”, and Step 1 ensures it prints nothing else. It follows that when R ∈ HELLO, R must halt. But R halts exactly when Q halts, because we didn’t change anything that effects whether it halts or not.

We make a very similar argument for when HNI(Q) = false. Then, since we’ve solved HaltsNoInput, which is undecidable, we’ve reached a contradiction. So, it follows that HELLO is undecidable as well.
A Decision Problem We Can Solve

\[\text{REGEQUIV} = \{(R_1, R_2) : R_1 \text{ and } R_2 \text{ are equivalent regexps}\} \]

In this case the hypothetical program does exist:
Convert both to NFAs then DFAs, minimize and compare

\[00^* (10)^* 11^* \quad 0^* (01)^* 1^* \quad 00^* (10)^* 11^* \quad 0^* (01)^* 01^* 1 \]

\[\rightarrow \text{False} \quad \text{True} \]
Showing **EQUIV** is Undecidable

Consider the set:

\[\text{EQUIV} = \{ (\text{CODE}(P), \text{CODE}(R)) : P, R \text{ are programs, } P(x) = R(x) \text{ for all inputs } x \} \]

Step 1: Construct P:

```java
public static boolean P()
{return true;}
```

Step 2: Construct R:

- **Step a:** Replace return type of Q with `boolean`
- **Step b:** Replace all return values with `true`
- **Step c:** Add "return true;" to the end of the program

Call this program R

Question: Does Q() halt?

Question: Are P and R Equivalent?

Answering with ANS would solve HaltsNoInput!
Pitfalls

• Not every problem on programs is undecidable! Which of these is decidable?

• Input \text{CODE}(P) \text{ and } x
 Output: true if P prints “ERROR” on input x
 after less than 100 steps
 false otherwise

• Input \text{CODE}(P) \text{ and } x
 Output: true if P prints “ERROR” on input x
 after more than 100 steps
 false otherwise