Author Katharine Gate recently attempted to make a chart of all sexual fetishes.

Little did she know that Russell and Whitehead had already failed at this same task.

Hey, Gödel — we're compiling a comprehensive list of fetishes. What turns you on?

Anything not on your list?

Uh...hm.
Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning
A brief history of reasoning

Ancient Greece

- Deductive logic
 - Euclid’s Elements
- Infinite things are a problem
 - Zeno’s paradox
A brief history of reasoning

• 1670’s-1800’s Calculus & infinite series
 – Suddenly infinite stuff really matters
 – Reasoning about the infinite still a problem
 Tendency for buggy or hazy proofs

• Mid-late 1800’s
 – Formal mathematical logic
 Boole Boolean Algebra
 – Theory of infinite sets and cardinality
 Cantor
 “There are more real #’s than rational #’s”
A brief history of reasoning

• 1900
 – Hilbert's famous speech outlines goal: mechanize all of mathematics
 23 problems

• 1930’s
 – Gödel, Turing show that Hilbert’s program is impossible.
 Gödel’s Incompleteness Theorem
 Undecidability of the Halting Problem

Both use ideas from Cantor’s proof about reals & rationals
Starting with Cantor

• How big is a set?
 – If S is finite, we already defined $|S|$ to be the number of elements in S.
 – What if S is infinite? Are all of these sets the same size?

 Natural numbers \mathbb{N}
 Even natural numbers
 Integers \mathbb{Z}
 Rational numbers \mathbb{Q}
 Real numbers \mathbb{R}
Cardinality

Definition: Two sets A and B are the same size (same *cardinality*) iff there is a 1-1 and onto function $f: A \rightarrow B$

Also applies to infinite sets
Cardinality

• The natural numbers and even natural numbers have the same cardinality:

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \ldots\]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \quad 18 \quad 20 \ldots\]

\(n\) is matched with \(2n\)

(see countablethoughts.com/E for demo)
Countability

Definition: A set is *countable* iff it is the same size as some subset of the natural numbers

Equivalent: A set S is *countable* iff there is an onto function $g: \mathbb{N} \rightarrow S$

Equivalent: A set S is *countable* iff we can write $S=\{s_1, s_2, s_3, \ldots\}$
The set of all integers is countable

```java
public static void enumerateZ() {
    int positive = 0;
    int negative = -1;
    while (true) {
        System.out.println(positive);
        System.out.println(negative);
        positive++;
        negative--;
    }
}
```

(See countablethoughts.com/Z for demo)

We need to show that for any integer, x, `enumerateZ` prints x. Suppose x is non-negative. The xth iteration through the loop will print x, because we always print `positive` and increment it each time. Suppose x is negative. Then, $x = -y$ for some non-negative y. The $(y-1)$st iteration through the loop will print x, because we decrement `negative` each time.

Since all integers are negative or non-negative, we list all possible integers.
Is the set of positive rational numbers countable?

• We can’t do the same thing we did for the integers
 – Between any two rational numbers there are an infinite number of others
The set of positive rational numbers is countable

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1/1 | 1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | 1/8 | ...
| 2/1 | 2/2 | 2/3 | 2/4 | 2/5 | 2/6 | 2/7 | 2/8 | ...
| 3/1 | 3/2 | 3/3 | 3/4 | 3/5 | 3/6 | 3/7 | 3/8 | ...
| 4/1 | 4/2 | 4/3 | 4/4 | 4/5 | 4/6 | 4/7 | 4/8 | ...
| 5/1 | 5/2 | 5/3 | 5/4 | 5/5 | 5/6 | 5/7 | 5/8 | ...
| 6/1 | 6/2 | 6/3 | 6/4 | 6/5 | 6/6 | 6/7 | 6/8 | ...
| 7/1 | 7/2 | 7/3 | 7/4 | 7/5 | 7/6 | 7/7 | 7/8 |
| | | | | | | | | |
The set of positive rational numbers is countable

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>1/5</td>
<td>1/6</td>
<td>1/7</td>
<td>1/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>2/2</td>
<td>2/3</td>
<td>2/4</td>
<td>2/5</td>
<td>2/6</td>
<td>2/7</td>
<td>2/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/1</td>
<td>4/2</td>
<td>4/3</td>
<td>4/4</td>
<td>4/5</td>
<td>4/6</td>
<td>4/7</td>
<td>4/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/1</td>
<td>5/2</td>
<td>5/3</td>
<td>5/4</td>
<td>5/5</td>
<td>5/6</td>
<td>5/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1</td>
<td>6/2</td>
<td>6/3</td>
<td>6/4</td>
<td>6/5</td>
<td>6/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1</td>
<td>7/2</td>
<td>7/3</td>
<td>7/4</td>
<td>7/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
The set of positive rational numbers is countable

\[\mathbb{Q}^+ = \{1/1, \ 2/1, 1/2, \ 3/1, 2/2, 1/3, \ 4/1, 2/3, 3/2, 1/4, \ 5/1, 4/2, 3/3, 2/4, 1/5, \ldots \} \]

List elements in order of

– numerator + denominator

– breaking ties according to denominator

Only k numbers have total of k

Technique is called “dovetailing”
The Positive Rationals are Countable: Another Way

```java
public static void enumerateQ() {
    for (nat sum=2; ; sum++) {
        for (nat p=1; p < sum; p++) {
            nat q = sum - p;
            System.out.println(new Rational(p, q));
        }
    }
}
```

We have to show that this function lists all positive rational numbers. First, note that any positive fraction has a sum that is at least two. Then, we want to show that for any sum \(s \), the program reaches \(s \). Note that the inner for loop runs for exactly \(s - 1 \) iterations, which is always finite. So, the program will eventually reach any sum.

Consider \(r = \frac{p}{q} \). Note that the sum for this fraction is \(p + q \). By the above, the program reaches this sum. Furthermore, since \(1 < p < p + q \), the inner loop prints out \(\frac{p}{q} \).
Claim: Σ^* is countable for every finite Σ

We must show that every string is printed. First, note that every string has a length. So, if we print out strings of every length, we’ve printed out all strings. Next, we show that $\text{printStringsOfLength}(n, s)$ prints all strings of length n prefixed by s. We go by induction.

BC ($n=0$): The empty string is the only string of length 0; note that when len is 0, the function prints s; so, it prints s.

IH: Suppose the claim is true for some $k \geq 0$.

IS: We know $\text{printStringsOfLength}(k-1, s + c)$ prints all strings of length $k - 1$ prefixed by $s + c$. Since we loop through all possible values of c, these are the same strings as those of length k, prefixed by s.

```java
public static void enumerateSigmaStar() {
    for (nat len=0; len < 3; len++) {
        printStringsOfLength(len, "");
    }
}

public static void printStringsOfLength(nat len, String s) {
    if (len == 0) {
        System.out.println(s);
        return;
    }
    for (char c : Sigma) {
        printStringsOfLength(len - 1, s + c);
    }
}
```
The set of all Java programs is countable

If $\Sigma = \langle$all valid characters in java programs\rangle, then the set of Java programs is a subset of Σ^*. Then, the listing for Σ^* from the previous slide prints all Java programs. Thus, the set of all Java programs is countable.
Georg Cantor

- Set theory
- Cardinality
- Continuum hypothesis
Georg Cantor

Cantor’s revolutionary ideas were not accepted by the mathematical establishment.

Poincaré referred to them as a “grave disease infecting mathematics.”

Kronecker fought to keep Cantor’s papers out of his journals.

He spent the last 30 years of his life battling depression, living often in “sanatoriums” (psychiatric hospitals).
What about the real numbers?

Q: Is every set is countable?

A: Theorem [Cantor] The set of real numbers (even just between 0 and 1) is NOT countable.

Proof is by contradiction using a new method called diagonalization.
Proof by Contradiction

• Suppose that \(\mathbb{R}^{[0,1)} \) is countable
• Then there is some listing of all elements
 \[\mathbb{R}^{[0,1)} = \{ \, r_1, r_2, r_3, r_4, \ldots \, \} \]
• We will prove that in such a listing there must be at least one missing element which contradicts statement “\(\mathbb{R}^{[0,1)} \) is countable”
• The missing element will be found by looking at the decimal expansions of \(r_1, r_2, r_3, r_4, \ldots \)
Real Numbers between 0 and 1: $\mathbb{R}^{[0,1)}$

- Every number between 0 and 1 has an infinite decimal expansion:

 $\frac{1}{2} = 0.50000000000000000000\ldots$

 $\frac{1}{3} = 0.33333333333333333333\ldots$

 $\frac{1}{7} = 0.14285714285714285714\ldots$

 $\pi - 3 = 0.14159265358979323846264\ldots$

 $\frac{1}{5} = 0.19999999999999999999\ldots$

 $= 0.20000000000000000000\ldots$
Representations of real numbers as decimals

Representation is unique except for the cases that decimal ends in all 0’s or all 9’s.

\[x = 0.19999999999999999999999... \]

\[10x = 1.99999999999999999999999... \]

\[9x = 1.8 \text{ so} \]

\[x = 0.20000000000000000000000... \]

Won’t allow the representations ending in all 9’s

All other representations give different elements of \(\mathbb{R}^{[0,1)} \)
<table>
<thead>
<tr>
<th>r_1</th>
<th>0.5</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_2</td>
<td>0.3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_3</td>
<td>0.1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_4</td>
<td>0.1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_5</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_6</td>
<td>0.2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_7</td>
<td>0.7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>r_8</td>
<td>0.6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>...</td>
<td>.....</td>
<td>....</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Supposed listing of $\mathbb{R}^{[0,1)}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>0.</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>r_2</td>
<td>0.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>r_3</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>r_4</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>r_5</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>r_6</td>
<td>0.</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>r_7</td>
<td>0.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>r_8</td>
<td>0.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Flipped Diagonal

<table>
<thead>
<tr>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_3)</th>
<th>(r_4)</th>
<th>(r_5)</th>
<th>(r_6)</th>
<th>(r_7)</th>
<th>(r_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>0.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Flipping Rule:
- If digit is 5, make it 1
- If digit is not 5, make it 5
Flipped Diagonal Number D

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\end{array}
\]

$D = 0.\ 1\ 5\ 5\ 1\ 5\ 5\ 5\ 5\ \ldots$

D is in $\mathbb{R}^{[0,1)}$

But for all n, we have

$D \neq r_n$ since they differ on n^{th} digit (which is not 9)

\Rightarrow list was incomplete

$\Rightarrow \mathbb{R}^{[0,1)}$ is not countable
The set of all functions $f : \mathbb{N} \rightarrow \{0,1,...,9\}$ is not countable

Suppose for contradiction that the set $S = \{f : (f : \mathbb{N} \rightarrow \{0,1,...,9\})\}$ is countable. Then, there exists a function $g : \mathbb{N} \rightarrow S$ that is onto.

Construct a function $h : \mathbb{N} \rightarrow \{0,1,...,9\}$ as follows:

$$h(n) = 9 - g(n)(n)$$

Note that $h \in S$, because it is a function from $\mathbb{N} \rightarrow \{0,1,...,9\}$. We claim h is not in our listing. Consider $g(n)$. Note that $g(n)(n)$ is a number between 0 and 9; however, $9 - x \neq x$. So, $h \neq g(n)$. So, h is not in our listing.

This is a contradiction; so, it follows that S is uncountable.
non-computable functions

• We have seen that
 – The set of all (Java) programs is countable
 – The set of all functions $f : \mathbb{N} \to \{0,1,...,9\}$ is not countable

• So...
 – There must be some function $f : \mathbb{N} \to \{0,1,...,9\}$ that is not computable by any program!
Back to the Halting Problem

- Suppose that there is a program H that computes the answer to the Halting Problem

- We will build a table with a row for each program (just like we did for uncountability of reals)

- If the supposed program H exists then the D program we constructed as before will exist and so be in the table

- But D must have entries like the “flipped diagonal”
 - D can’t possibly be in the table.
 - Only assumption was that H exists. That must be false.
<table>
<thead>
<tr>
<th>programs P</th>
<th>$<P_1>$</th>
<th>$<P_2>$</th>
<th>$<P_3>$</th>
<th>$<P_4>$</th>
<th>$<P_5>$</th>
<th>$<P_6>$</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_9</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.
Some possible inputs x:

<table>
<thead>
<tr>
<th>Programs P</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
<th>P_8</th>
<th>P_9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.
<table>
<thead>
<tr>
<th>Programs P</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P_9</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

D behaves like flipped diagonal

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.
recall: code for D assuming subroutine H that solves the halting problem

• Function $D(x)$:
 – if $H(x,x)=1$ then
 • while (true); /* loop forever */
 – else
 • no-op; /* do nothing and halt */
 – endif

• If D existed it would have a row different from every row of the table
 – D can’t be a program so H cannot exist!