highlights

- **DFAs \equiv Regular Expressions**
 - No need to know details of NFAs\rightarrowRegExpressions

- **Method for proving no DFAs for languages**
 - e.g. $\{0^n1^n : n \geq 0\}$,
 - $\{\text{Binary palindromes}\}$

pattern matching

- **Given**
 - a string, s, of n characters
 - a pattern, p, of m characters
 - usually $m<<n$

- **Find**
 - all occurrences of the pattern p in the string s

- **Obvious algorithm:**
 - try to see if p matches at each of the positions in s
 - stop at a failed match and try the next position

string $s = x\ y\ x\ x\ y\ x\ x\ y\ x\ y\ x\ y\ x\ y\ x\ x$

pattern $p = x\ y\ x\ y\ y\ x\ x\ x$
string $s = x y x y x y x y y x y x y x y x y x y x y x x$

string $s = x y x y x y x y y x y x y y x y x y x x$

string $s = x y x y x y x y y x y x y x y x y y x y x y x y x x$

string $s = x y x x y x y x y x y x y x y x y x y x y x y x y x x$
string $s = x\ y\ x\ x\ y\ x\ y\ x\ x$
better pattern matching via finite automata

- Build a DFA for the pattern (preprocessing) of size \(O(m)\)
 - Keep track of the ‘longest match currently active’
 - The DFA will have only \(m+1\) states

- Run the DFA on the string \(n\) steps

- Obvious construction method for DFA will be \(O(m^2)\) but can be done in \(O(m)\) time.
- Total \(O(m+n)\) time

building a DFA for the pattern

pattern \(p=x y x y y x x y x x x\)
preprocessing the pattern

pattern $p = x \ y \ x \ y \ y \ x \ y \ x \ y \ x \ x$

preprocessing the pattern

pattern $p = x \ y \ x \ y \ y \ x \ y \ x \ y \ x \ x$

preprocessing the pattern

pattern $p = x \ y \ x \ y \ y \ x \ y \ x \ y \ x \ x$

preprocessing the pattern

pattern $p = x \ y \ x \ y \ y \ x \ y \ x \ y \ x \ x$
generalizing

- Can search for arbitrary combinations of patterns
 - Not just a single pattern
 - Build NFA for pattern then convert to DFA ‘on the fly’.
 Compare DFA constructed above with subset construction for the obvious NFA.

Languages and Machines!

- DFA
- NFA
- Regex
- Binary Palindromes
- Regular
- Context-Free
- Finite
- All

Are there things Java can’t do?

An Assignment Too Simple for 142.

Students should write a Java program that...
- Prints “Hello” to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

Follow Up Question

What does this program do?

```java
_(_.__._._){__/_ <=1?(_._.__+1,___):!(___%__)?(_._.__+1,0):___%__==___ / ___&&!____?(printf("%d\t",___/__),(_._.__+1,0)):_.__%__>1&&___%__<___/___?(_( __,1+ _._.__+!(___/__%__());___<_*) __\)
 main(){(_100,0,0);}main(){(0100,0,0);}main(){(0100,0,0);}
```
Sneak Peak

It turns out the simple autograder is impossible to write...

And we'll prove it!

Some Notation and Starting Ideas

We're going to be talking about Java code a lot.

CODE(P) will mean “the code of the program P”

So, consider the following function:

```java
public String P(String x) {
    return new String(Arrays.sort(x.toCharArray()));
}
```

What is P(CODE(P))?

“((()..:AACPSSaabceegghiiiiInnnnooprrrrrrsssttttttuuwwxxyy)”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output:
- true if P halts on input x
- false if P does not halt on input x

It turns out that it isn’t possible to write a program that solves the Halting Problem.
Proof by contradiction

• Suppose that \(H \) is a Java program that solves the Halting problem. Then we can write this program:

```java
public static void D(x) {
    if (H(x, x) == true) {
        while (true); /* don’t halt */
    }
    else {
        return; /* halt */
    }
}
```

• Does \(D(\text{CODE}(D)) \) halt?

\(H \) solves the halting problem implies that
\(H(\text{CODE}(D), x) \) is true iff \(D(x) \) halts,
\(H(\text{CODE}(D), x) \) is false iff not

Suppose \(D(\text{CODE}(D)) \) halts.
Then, we must be in the second case of the if.
So, \(H(\text{CODE}(D), \text{CODE}(D)) \) is false
Which means \(D(\text{CODE}(D)) \) doesn’t halt

Suppose \(D(\text{CODE}(D)) \) doesn’t halt.
Then, we must be in the first case of the if.
So, \(H(\text{CODE}(D), \text{CODE}(D)) \) is true.
Which means \(D(\text{CODE}(D)) \) halts.
H solves the halting problem implies that
\(H(CODE(D), x) \) is \textbf{true} iff \(D(x) \) halts, \(H(CODE(D), x) \) is \textbf{false} iff

Suppose \(D(CODE(D)) \) \textbf{halts}.
Then, we must be in the second case of the if.
So, \(H(CODE(D), CODE(D)) \) is \textbf{false}
Which means \(D(CODE(D)) \) \textbf{doesn’t halt}.

Suppose \(D(CODE(D)) \) \textbf{doesn’t halt}.
Then, we must be in the first case of the if.
So, \(H(CODE(D), CODE(D)) \) is \textbf{true}.
Which means \(D(CODE(D)) \) \textbf{halts}.

That’s it!

- We proved that there is no computer program that can solve the Halting Problem.
 – There was nothing special about Java
- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

What’s next?

- We showed: If some “hypothetical” subroutine \(H \) existed that solved the Halting Problem then it would let us build a program \(D \) that cannot possibly exist
 – We will use the same idea to show that programs solving other problems are impossible, but we now will be able to use that \(H \) cannot exist.
- A key piece of the proof was considering what a program does when given its own code as input
 – This was inspired by a method to compare the sizes of infinite sets call diagonalization that we will study next class.