Lecture 25: Non-regularity and limits of FSMs
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – n-state NFA yields DFA with at most 2^n states
 – We saw an example where roughly 2^n is necessary
 Is the n^{th} char from the end a 1?

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms
DFAs \equiv Regular expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA if and only if it has a regular expression

This direction will be completely untested. We will post slides, but we have more important things to discuss today.
Languages and Machines!

- {001, 10, 12}
- 0*
- Regular
- Context-Free
- All

- DFA
- NFA
- Regex
- Finite
Languages and Machines!

Warmup: All finite languages are regular.

{001, 10, 12}
DFAs Recognize Any Finite Language

Construct DFAs for each string in the language.

Then, put them together using the union construction.
Languages and Machines!

- All
- Context-Free
- Regular
- DFA
- NFA
- Regex
- Finite
- 0*
- {001, 10, 12}

Warmup 2: Surprising example here
An Interesting Infinite Regular Language

L = \{x \in \{0, 1\}^*: x \text{ has an equal number of substrings 01 and 10}\}.

L is infinite.

0, 00, 000, ...

L is regular.
Languages and Machines!

Main Event: Prove there is a context-free language that isn’t regular.

{001, 10, 12}
Irregular Language!

B = \{binary palindromes\} can’t be recognized by any DFA

Why is this language not regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide the language?

A: It would need to keep track of the “first part” of the input in order to check the second part against it

...but there are an infinite # of possible first parts and we only have finitely many states.

How do we prove it?
$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA

Consider some arbitrary DFA. We want to show it doesn’t work for our language.

Consider the infinite set of strings
\[
S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}
\]

That’s a nice set of first parts to have to remember but how can we argue that a DFA does the wrong thing for B?

• Show that some $x \in B$ and some $y \notin B$ both must end up at the same state of the DFA

That state can’t be
• a final state since then y is accepted: error on y
• a non-final state since then x is rejected: error on x
B = \{\text{binary palindromes}\} can’t be recognized by any DFA

Suppose we are given an arbitrary DFA M.
Consider the infinite set of strings

$$S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}$$

- Goal: Show that some $x \in B$ and some $y \notin B$ both must end up at the same state of M

Since S is infinite we know that two different strings in S must land in the same state of M, call them 0^i1 and 0^j1 for $i \neq j$.

- That also must be true for 0^i1z and 0^j1z for any $z \in \{0,1\}^*$!

In particular, with $z=0^i$ we get that 0^i10^i and 0^j10^i end up at the same state of M. Since $0^i10^i \in B$ and $0^j10^i \notin B$ (because $i \neq j$) M does not recognize B. \therefore no DFA can recognize B.

Showing a Language L is not regular

1. Find an infinite set $S = \{s_0, s_1, \ldots, s_n, \ldots\}$ of string prefixes that you think will need to be remembered separately.

2. “Let M be an arbitrary DFA. Since S is infinite and M is finite state there must be two strings s_i and s_j in S for some $i \neq j$ that end up at the same state of M.”

 Note: You don’t get to choose which two strings s_i and s_j.

3. Find a string t (typically depending on s_i and/or s_j) such that

 s_it is in L, and

 s_jt is not in L

 or s_it is not in L, and

 s_jt is in L

4. “Since s_i and s_j both end up at the same state of M, and we appended the same string t, both s_it and s_jt end at the same state of M. Since $s_it \in L$ and $s_jt \notin L$, M does not recognize L.”

5. “Since M was arbitrary, no DFA recognizes L.”
Prove $A = \{0^n1^n : n \geq 0\}$ is not regular

Let M be an arbitrary DFA.

Let $S = \{0^n : n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^i and 0^j (for some $i \neq j$) that end in the same state in M.

Consider appending 1^i to both strings. Note that $0^i1^i \in A$, but $0^j1^i \notin A$ since $i \neq j$. But they both end up in the same state of M. Since that state can’t be both an accept and reject state, M does not recognize A.

Since M was arbitrary, no DFA recognizes A.
Another Irregular Language Example

L = \{x \in \{0, 1, 2\}^* : x \text{ has an equal number of substrings } 01 \text{ and } 10\}.

Intuition: Need to remember difference in # of \textbf{01} or \textbf{10} substrings seen, but only hard to do if these are separated by \textbf{2’s}.

1. Let \textbf{S}=\{\varepsilon, 012, 012012, 012012012, \ldots\} = \{(012)^n : n \in \mathbb{N}\}

2. Let \textbf{M} be an arbitrary DFA. Since \textbf{S} is infinite and \textbf{M} is finite state there must be two strings \((012)^i\) and \((012)^j\) for some \(i \neq j\) that end up at the same state of \textbf{M}.

3. Consider appending string \textbf{t} = \((102)^i\) to each of these strings.

Then \((012)^i (102)^i \in L\) but \((012)^j (102)^i \notin L\) since \(i \neq j\)

4. So \((012)^i (102)^i\) and \((012)^j (102)^i\) end up at the same state of \textbf{M} since \((012)^i\) and \((012)^j\) do. Since \((012)^i (102)^i \in L\) and \((012)^j (102)^i \notin L\), \textbf{M} does not recognize \(L\).

5. Since \textbf{M} was arbitrary, no DFA recognizes \(L\).