Fall 2014
Lecture 24: NFAs, Regular expressions, and NFA → DFA
Highlights

- FSMs with output at states
- State minimization
Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states.
Nondeterministic Finite Automaton (NFA)

• Graph with start state, final states, edges labeled by symbols (like DFA) but
 – Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 – Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Goal: NFA to recognize...

Binary strings with even # of 1’s or contain the substring 111
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...
Regular Expressions over Σ

• **Basis:**
 – \emptyset, ε are regular expressions
 – a is a regular expression for any $a \in \Sigma$

• **Recursive step:**
 – If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Base Case

- Case \emptyset:

- Case ε:

- Case a:
Base Case

- Case \emptyset:

- Case ϵ:

- Case a:
Inductive Hypothesis

- Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B.

![Diagram of NFAs N_A and N_B]
Inductive Step

Case \((A \cup B)\):
Inductive Step

Case \((A \cup B)\):

\[\varepsilon \]

\[N_A \]

\[N_B \]
Inductive Step

Case (AB):
Inductive Step

Case (AB):

\[\varepsilon \]

\[\varepsilon \]

\[N_A \]

\[N_B \]
Inductive Step

Case A*
Inductive Step

Case A*
Build an NFA for $(01 \cup 1)^*0$
Solution

\[(01 \cup 1)^*0\]
NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Conversion of NFAs to a DFAs

• Proof Idea:
 – The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 – There will be one state in the DFA for each subset of states of the NFA that can be reached by some string
Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ε

![Diagram of NFA and DFA conversion](image)
For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by starting from some state in S, then following one edge labeled by s, and then following some number of edges labeled by ε.
- T will be \emptyset if no edges from S labeled s exist.
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA

NFA

DFA

a, b, c, e

a

b

c

e
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – n-state NFA yields DFA with at most 2^n states
 – We saw an example where roughly 2^n is necessary

Is the n^{th} char from the end a 1?

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms