Review: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

- **Base Case:** Show that $P(u)$ is true for all specific elements u of S mentioned in the **Basis step**

- **Inductive Hypothesis:** Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the **Recursive step**

- **Inductive Step:** Prove that $P(w)$ holds for each of the new elements w constructed in the **Recursive step** using the named elements mentioned in the Inductive Hypothesis

- **Conclude** that $\forall x \in S, P(x)$

Function Definitions on Recursively Defined Sets

- **Length:**
 \[
 \begin{align*}
 \text{len}(\varepsilon) &= 0 \\
 \text{len}(wa) &= \text{len}(w) + 1 \quad \text{for } w \in \Sigma^*, a \in \Sigma
 \end{align*}
 \]

- **Reversal:**
 \[
 \begin{align*}
 \varepsilon^R &= \varepsilon \\
 (wa)^R &= aw^R \quad \text{for } w \in \Sigma^*, a \in \Sigma
 \end{align*}
 \]

- **Concatenation:**
 \[
 \begin{align*}
 x \cdot \varepsilon &= x \quad \text{for } x \in \Sigma^* \\
 x \cdot wa &= (x \cdot w)a \quad \text{for } x \in \Sigma^*, a \in \Sigma
 \end{align*}
 \]
\[\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \text{ for all } x,y \in \Sigma^* \]

Let \(P(y) \) be “\(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.
We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \bullet \varepsilon) = \text{len}(x) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \).

Let \(a \in \Sigma \). Let \(x \in \Sigma^* \). Then \(\text{len}(x \bullet wa) = \text{len}((x \bullet w)a) \) by defn of \(\bullet \)

\[= \text{len}(x \bullet w) + 1 \text{ by defn of len} \]
\[= \text{len}(x) + \text{len}(w) + 1 \text{ by \text{I.H.}} \]
\[= \text{len}(x) + \text{len}(wa) \text{ by defn of len} \]

Therefore \(\text{len}(x \bullet wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x,y \in \Sigma^* \).

Functions Defined on Rooted Binary Trees

- \(\text{size}(\bullet) = 1 \)
- \(\text{size}(\quad T_1 \quad \quad T_2) = 1 + \text{size}(T_1) + \text{size}(T_2) \)
- \(\text{height}(\bullet) = 0 \)
- \(\text{height}(\quad T_1 \quad \quad T_2) = 1 + \max\{\text{height}(T_1),\text{height}(T_2)\} \)

Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)
Languages: sets of strings

- Sets of strings that satisfy special properties are called languages. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0’s and 1’s

Regular Expressions

Regular expressions over Σ

- Basis:
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*

Each Regular Expression is a “pattern”

- ε matches the empty string
- a matches the one character string a
- $(A \cup B)$ matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A^* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

- 001*
- 0*1*
- $(0 \cup 1)0(0 \cup 1)0$
- $(0*1*)^*$
- $(0 \cup 1)^* 0110 (0 \cup 1)^*$
- $(00 \cup 11)^* (01010 \cup 10001)(0 \cup 1)^*$
Regular Expressions in Practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaaab");
- boolean b = m.matches();

\[01\] a 0 or a 1 \^ start of string \$ end of string
\[0-9\] any single digit \. period \, comma \- minus
. any single character
ab a followed by b (AB)
(a | b) a or b (A \cup B)
a? zero or one of a (A \cup \varepsilon)
a* zero or more of a A*
a+ one or more of a AA*

- e.g. ^[\-+]?[0-9]* (\. | \,)?[0-9]+$ General form of decimal number e.g. 9.12\, or -9.8 (Europe)

More Examples

- All binary strings that have an even # of 1’s
- All binary strings that don’t contain 101