Fall 2014
Lecture 14: Induction
Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily

- Particularly useful for reasoning about programs!

```java
for(int i=0; i < n; n++) {
    ...}
```
- Show \(P(i) \) holds after \(i \) times through the loop

```java
public int f(int x) {
    if (x == 0) {
        return 0;
    }
    else {
        return f(x - 1);
    }
}
```
- \(f(x) = x \) for all values of \(x \geq 0 \) naturally shown by induction.
Prove for all $k > 0$, n^k even \rightarrow n even

Let $k > 0$ be arbitrary. We go by contrapositive. Suppose that n is odd. We know that if a, b are odd, then ab is also odd.

So,

$$(\ldots \bullet (n \bullet n) \bullet n) \bullet \ldots \bullet n = n^k$$

(k times)

Those “…”s are a problem! We’re trying to say “we can use the same argument over and over”... We should use induction instead.
Induction Is A Rule of Inference

Domain: Natural Numbers

\[
P(0) \quad \forall k \ (P(k) \rightarrow P(k + 1))
\]

\[\therefore \forall n \ P(n)\]

How does this technique prove P(5)?

By Induction:
- \[P(0) \rightarrow P(1)\]
- \[P(1) \rightarrow P(2)\]
- \[P(2) \rightarrow P(3)\]
- \[P(3) \rightarrow P(4)\]
- \[P(4) \rightarrow P(5)\]

To Prove:
- \(P(0)\)
- \(P(1)\)
- \(P(2)\)
- \(P(3)\)
- \(P(4)\)
- \(P(5)\)

First, we prove \(P(0)\).

Since \(P(n) \rightarrow P(n+1)\) for all \(n\), we have \(P(0) \rightarrow P(1)\).

Since \(P(0)\) is true and \(P(0) \rightarrow P(1)\), by Modus Ponens, \(P(1)\) is true.

Since \(P(n) \rightarrow P(n+1)\) for all \(n\), we have \(P(1) \rightarrow P(2)\).

Since \(P(1)\) is true and \(P(1) \rightarrow P(2)\), by Modus Ponens, \(P(2)\) is true.
Using The Induction Rule In A Formal Proof

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k + 1)) \]

\[\therefore \forall n \ P(n) \]

1. Prove \(P(0) \)
2. Let \(k \) be an arbitrary integer \(\geq 0 \)
 3. Assume that \(P(k) \) is true
 4. ...
 5. Prove \(P(k+1) \) is true

6. \(P(k) \rightarrow P(k+1) \) \hspace{2cm} \text{Direct Proof Rule}
7. \(\forall k \ (P(k) \rightarrow P(k+1)) \) \hspace{2cm} \text{Intro } \forall \text{ from 2-6}
8. \(\forall n \ P(n) \) \hspace{2cm} \text{Induction Rule 1&7}
What can we say about $1 + 2 + 4 + 8 + ... + 2^n$

- $1 = 1$
- $1 + 2 = 3$
- $1 + 2 + 4 = 7$
- $1 + 2 + 4 + 8 = 15$
- $1 + 2 + 4 + 8 + 16 = 31$

- Can we describe the pattern?
 - $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$
Proving $1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1$

• We could try proving it normally...
 – We want to show that $1 + 2 + 4 + \ldots + 2^n = 2^{n+1}$.
 – So, what do we do now? We can sort of explain the pattern, but that’s not a proof...

• We could prove it for $n=1$, $n=2$, $n=3$, ... (individually), but that would literally take forever...
Instead, Let’s Use Induction

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k+1)) \]

\[\therefore \forall n \ P(n) \]

1. Prove \(P(0) \)
2. Let \(k \) be an arbitrary integer \(\geq 0 \)
3. Assume that \(P(k) \) is true
4. ...
5. Prove \(P(k+1) \) is true
6. \(P(k) \rightarrow P(k+1) \)
7. \(\forall k \ (P(k) \rightarrow P(k+1)) \)
8. \(\forall n \ P(n) \)

Base Case

Inductive Hypothesis

Inductive Step

Conclusion

Direct Proof Rule

Intro \(\forall \) from 2-6

Induction Rule 1&7
5 Steps To Inductive Proofs In English

Proof:
1. “We will show that P(n) is true for every \(n \geq 0 \) by Induction.”
2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:”
 Assume P(k) is true for some arbitrary integer \(k \geq 0 \)
4. “Inductive Step:” Want to prove that P(k+1) is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are using it. (Don’t assume P(k+1) !!)
5. “Conclusion: Result follows by induction”
Proving $1 + 2 + \ldots + 2^n = 2^{n+1} - 1$ for all $n \geq 0$.

Let $P(n)$ be “$1 + 2 + \ldots + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.

Base Case (n=0):

$$2^0 = 1 = 2 - 1 = 2^{0+1} - 1$$

Induction Hypothesis:

Suppose that $P(k)$ is true for some arbitrary $k \geq 0$.

Induction Step:

WTS: Show $P(k+1)$ (i.e. show $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$)

1. $1 + 2 + \ldots + 2^k = 2^{k+1} - 1$ (by IH!)
2. Adding 2^{k+1} to both sides, we get:
 $$1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$
3. Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.
4. So, we have $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly $P(k+1)$.

Thus $P(k)$ is true for all $k \in \mathbb{N}$, by induction.
Prove $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for all $n \geq 1$.

Let $P(n)$ be $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

We go by induction on n.

Base Case:
When $n=1$, we have $1 = 1(2)/2$. So, $P(0)$ is true.

Induction Hypothesis:
Suppose $P(k)$ is true for some $k \geq 1$.

Induction Step:
We know $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$, by the IH. We want to prove $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$.

Note that $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$ by the IH.

And $\sum_{i=1}^{k} i = \frac{(k+1)(k+2)}{2}$ is exactly $P(k+1)$.

The claim follows for all $n \geq 1$, by induction.
Another Pattern

• $20 - 1 = 1 - 1 = 0 = 3 \cdot 0$
• $22 - 1 = 4 - 1 = 3 = 3 \cdot 1$
• $24 - 1 = 16 - 1 = 15 = 3 \cdot 5$
• $26 - 1 = 64 - 1 = 63 = 3 \cdot 21$
• $28 - 1 = 256 - 1 = 255 = 3 \cdot 85$
• ...
Another Example

We want to prove $3 \mid 2^{2n} - 1$ for all $n \geq 0$.

Let $P(n)$ be “$2^{2n} - 1 = 3k$ for some integer k” for all $n \geq 0$.

We go by induction.

Base Case: When $n = 0$, note that $2^0 - 1 = 0 = 3k$. So, $P(0)$ is true.

Induction Hypothesis: Suppose $P(k)$ is true for some $k \geq 0$.

Induction Step: Note that $2^{2(k+1)} - 1 = (2^{2k})(2^2) - 1$. By the IH, $2^{2k} - 1 = 3j$ for some j. So, $2^{2(k+1)} - 1 = (2^{2k})(2^2) - 1 = (3j + 1)(2^2) - 1 = 12j + 3 = 3(4j + 1)$. It follows that there is some r (namely, $r = 4j + 1$) such that $2^{2(k+1)} - 1 = 3r$.

Since $P(0)$ is true, and $P(k) \rightarrow P(k+1)$ for all $k \geq 0$, the claim is true by induction.