Basic Applications of mod

- Hashing
- Pseudo random number generation

Hashing

Scenario:
Map a small number of data values from a large domain \(\{0, 1, \ldots, M-1\}\) ...
...into a small set of locations \(\{0, 1, \ldots, n-1\}\) so one can quickly check if some value is present

- \(\text{hash}(x) = x \mod p\) for \(p\) a prime close to \(n\)
 - or \(\text{hash}(x) = (ax+b) \mod p\)

- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

\[x_{n+1} = (a\ x_n + c) \mod m \]

Choose random \(x_0, a, c, m\) and produce a long sequence of \(x_n\)'s
Modular Exponentiation mod 7

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

X

1

2

3

4

5

6

Exponentiation

- Compute 78365^{81453}
- Compute $78365^{81453} \mod 104729$

Output is small
- need to keep intermediate results small

Repeated Squaring – small and fast

Since $a \mod m \equiv a \pmod{m}$ for any a
we have $a^2 \mod m = (a \mod m)^2 \mod m$
and $a^4 \mod m = (a^2 \mod m)^2 \mod m$
and $a^8 \mod m = (a^4 \mod m)^2 \mod m$
and $a^{16} \mod m = (a^8 \mod m)^2 \mod m$
and $a^{32} \mod m = (a^{16} \mod m)^2 \mod m$

Can compute $a^k \mod m$ for $k=2^i$ in only i steps

Fast Exponentiation

```java
public static long FastModExp(long base, long exponent, long modulus) {
    long result = 1;
    base = base % modulus;
    while (exponent > 0) {
        if ((exponent % 2) == 1) {
            result = (result * base) % modulus;
            exponent -= 1;
        }
        /* Note that exponent is definitely divisible by 2 here. */
        exponent /= 2;
        base = (base * base) % modulus;
        /* The last iteration of the loop will always be exponent = 1 */
        /* so, result will always be correct. */
    }
    return result;
}
```

$b^e \mod m = (b^2)^{e/2} \mod m$, when e is even

$b^e \mod m = (b*(b^{e-1} \mod m) \mod m) \mod m$
Program Trace

Let $M = 104729$

78365^{81453} mod M

$= (((78365 \ mod \ M) \ast (78365^{81452} \ mod \ M)) \ mod \ M)$

$= (78365 \ast ((78365^2 \ mod \ M)^{81452/2} \ mod \ M)) \ mod \ M$

$= (78365 \ast ((78852 \ mod \ M)^{20363} \ mod \ M)) \ mod \ M$

$= (78365 \ast (86632^{20363} \ mod \ M)) \ mod \ M$

$= (78365 \ast (86632 \ mod \ M) \ast (86632^{20362} \ mod \ M)) \ mod \ M$

$= ...$

$= 45235$

Fast Exponentiation Algorithm

Another way:

$81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^8 + 2^7 + 2^6$

$a^{81453} = a^{2^{16}} \ast a^{2^{13}} \ast a^{2^{12}} \ast a^{2^{11}} \ast a^{2^{10}} \ast a^{2^9} \ast a^{2^8} \ast a^{2^7} \ast a^{2^6}$

a^{81453} mod $m=$

(...(((a^{2^{16}} \ mod \ m) \ast (a^{2^{13}} \ mod \ m) \ mod \ m \ast (a^{2^{12}} \ mod \ m) \ mod \ m \ast (a^{2^{11}} \ mod \ m) \ mod \ m \ast (a^{2^{10}} \ mod \ m) \ mod \ m \ast (a^{2^9} \ mod \ m) \ mod \ m \ast (a^{2^8} \ mod \ m) \ mod \ m \ast (a^{2^7} \ mod \ m) \ mod \ m \ast (a^{2^6} \ mod \ m) \ mod \ m \mod \ m)$

The fast exponentiation algorithm computes a^n mod m using $O(\log n)$ multiplications mod m

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

$$48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$$

$$591 = 3 \cdot 197$$

$$45,523 = 45,523$$

$$321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$$

$$1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$$
Factorization

If \(n \) is composite, it has a (non-trivial) factor, \(f \), where \(f \leq \sqrt{n} \).

Let \(n \) be an arbitrary composite number. Suppose, for contradiction, that all of the factors of \(n \) are greater than \(\sqrt{n} \). Then, since \(n \) is composite, there are two factors, \(a \) and \(b \), such that \(1 < a, b < n \) such that \(n = ab \).

Note that \(a, b > \sqrt{n} \) by assumption. So, \(n = ab > \sqrt{n}\sqrt{n} = n \), which is a contradiction. It follows that the original claim is true.

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose for contradiction that there are \(n \) primes for some natural number \(n \). Call them \(p_1 < p_2 < \ldots < p_n \). Consider \(P = p_1p_2\ldots p_n \) and define \(Q = P + 1 \).

Case 1 (\(Q \) is prime). Then, we’re done, because \(Q \) is larger than any of the primes; so, it is a new prime.

Case 2 (\(Q \) is composite). Then, there must be some prime \(p \mid q \). Note that since \(P \) divides every possible prime, \(p \mid P \) as well. It follows that \(p \mid (Q - P) \rightarrow p \mid (P + 1) - P \rightarrow p \mid 1 \). This is impossible, because \(p \) must be at least two.

Since both cases lead to a contradiction, the original claim is true.

Famous Algorithmic Problems

• Primality Testing
 – Given an integer \(n \), determine if \(n \) is prime

• Factoring
 – Given an integer \(n \), determine the prime factorization of \(n \)

Factoring

Factor the following 232 digit number [RSA768]:

\[
12301866845301175513049495838496272077
285356959533479219732245215172640050726
36575187452019978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413
\]
Greatest Common Divisor

GCD(a, b):

Largest integer \(d \) such that \(d \mid a \) and \(d \mid b \)

- \(\text{GCD}(100, 125) = \)
- \(\text{GCD}(17, 49) = \)
- \(\text{GCD}(11, 66) = \)
- \(\text{GCD}(13, 0) = \)
- \(\text{GCD}(180, 252) = \)

GCD and Factoring

\(a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200 \)
\(b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750 \)

\[\text{GCD}(a, b) = 2^\min(3,1) \cdot 3^\min(1,2) \cdot 5^\min(2,3) \cdot 7^\min(1,1) \cdot 11^\min(1,0) \cdot 13^\min(0,1) \]

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If \(a \) and \(b \) are positive integers, then
\[\text{gcd}(a,b) = \text{gcd}(b, a \mod b) \]

Proof:
Consider an arbitrary divisor, \(d \), such that \(d \mid a \) and \(d \mid b \). Note that
\(a = (a \div b)b + (a \mod b) \). By definition of \(d \mid a \), we have \((a \div b)b + (a \mod b) = kd \).
Since \(d \mid b \), we also have \(b = jd \). Re-arranging, we see
\((a \mod b) = kd - (a \div b)b = d(k - (a \div b)) \).
So, \(d \mid (a \mod b) \).

Now, consider an arbitrary divisor, \(d \), such that \(d \mid b \) and \(d \mid (a \mod b) \). It follows
that \((a \mod b) = kd \). Adding \((a \div b)b \) to both sides gives
\(a = (a \mod b) + (a \div b)b = kd + (a \div b)b = kd + (a \div b)jd = d(k + (a \div b)) \).
So, \(d \mid a \).

Since all the divisors of \(a \) and \(b \) are the same as the divisors of \(b \) and \(a \mod b \),
it follows that the greatest divisor of each pair is the same as well.
Euclid’s Algorithm

Repeatedly use the GCD fact to reduce numbers until you get \(\text{GCD}(x, 0) = x \).

\[
\text{gcd}(660, 126) = \text{gcd}(126, 660 \mod 126) = \text{gcd}(126, 30) = \text{gcd}(30, 126 \mod 30) = \text{gcd}(30, 6) = \text{gcd}(6, 30 \mod 6) = \text{gcd}(6, 0) = 6
\]

Euclid’s Algorithm

\[
\text{GCD}(x, y) = \text{GCD}(y, x \mod y)
\]

```
int GCD(int a, int b){ /* a >= b, b > 0 */
    int tmp;
    while (y > 0) {
        tmp = a % b;
        a = b;
        b = tmp;
    }
    return a;
}
```

Example: GCD(660, 126)