Let \(a \) be an integer and \(d \) a positive integer. Then there are *unique* integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

\[
q = a \ \text{div} \ d \quad r = a \ \text{mod} \ d
\]
Let a and b be integers, and m be a positive integer. We say a \textit{is congruent to} b \textit{modulo} m if m divides a – b. We use the notation \(a \equiv b \pmod{m} \) to indicate that a is congruent to b modulo m.
Integers a, b, with $a \neq 0$, we say that a divides b if there is an integer k such that $b = ka$. The notation $a \mid b$ denotes “a divides b.”
In my paper, I use an extension of the divisor function over the Gaussian integers to generalize the so-called "friendly numbers" into the complex plane.

Hold on, is this paper simply a giant build-up to an "imaginary friends" pun?

It might not be.

I'm sorry, we're revoking your math license.
Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Proof: Suppose that $a \equiv b \pmod{m}$.
By definition: $a \equiv b \pmod{m}$ implies $m \mid (a - b)$ which by definition implies that $a - b = km$ for some integer k.
Therefore $a = b + km$. Taking both sides modulo m we get
$$a \mod m = (b + km) \mod m = b \mod m.$$

Suppose that $a \mod m = b \mod m$.
By the division theorem, $a = mq + (a \mod m)$ and
$$b = ms + (b \mod m)$$
for some integers q, s.

$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$
$$= m(q - s) + (a \mod m - b \mod m)$$
$$= m(q - s)$$ since $a \mod m = b \mod m$

Therefore $m \mid (a-b)$ and so $a \equiv b \pmod{m}$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Adding the equations together gives us $(a + c) - (b + d) = m(k + j)$. Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.
Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Then, $a = km + b$ and $c = jm + d$. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$.

Re-arranging gives us $ac - bd = m(kjm + kd + jb)$. Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.
Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):
Suppose $n \equiv 0 \pmod{2}$.
Then, $n = 2k$ for some k.
So, $n^2 = (2k)^2 = 4k^2$. So, by definition of congruence, $n^2 \equiv 0 \pmod{4}$.

Case 2 (n is odd):
Suppose $n \equiv 1 \pmod{2}$.
Then, $n = 2k + 1$ for some k.
So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$.

Let's start by looking at a small example:

$$
\begin{align*}
0^2 &= 0 \equiv 0 \pmod{4} \\
1^2 &= 1 \equiv 1 \pmod{4} \\
2^2 &= 4 \equiv 0 \pmod{4} \\
3^2 &= 9 \equiv 1 \pmod{4} \\
4^2 &= 16 \equiv 0 \pmod{4}
\end{align*}
$$

It looks like

$n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and

$n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$.

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

 If \(x = \sum_{i=0}^{n-1} b_i 2^i \) where each \(b_i \in \{0,1\} \)

 then representation is \(b_{n-1}...b_2 b_1 b_0 \)

 99 = 64 + 32 + 2 + 1
 18 = 16 + 2

• For n = 8:

 99: 0110 0011
 18: 0001 0010
Sign-Magnitude Integer Representation

n-bit signed integers
Suppose \(-2^{n-1} < x < 2^{n-1}\)
First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99: 0110 0011
-18: 1001 0010

Any problems with this representation?
Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose $0 \leq x < 2^{n-1}$,
 x is represented by the binary representation of x

Suppose $0 \leq x \leq 2^{n-1}$,
 $-x$ is represented by the binary representation of $2^n - x$

\[99 = 64 + 32 + 2 + 1 \]
\[18 = 16 + 2 \]

For $n = 8$:
 99: 0110 0011
 -18: 1110 1110
Sign-Magnitude vs. Two’s Complement

<table>
<thead>
<tr>
<th></th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

Sign-bit

<table>
<thead>
<tr>
<th></th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

Two’s complement
Two’s Complement Representation

- For $0 < x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

- To compute this: Flip the bits of x then add 1:
 - All 1’s string is $2^n - 1$, so

 \[
 \text{Flip the bits of } x \equiv \text{replace } x \text{ by } 2^n - 1 - x
 \]
Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher
Hashing

Scenario:

Map a small number of data values from a large domain \(\{0, 1, ..., M-1\} \) ...

...into a small set of locations \(\{0,1,...,n-1\} \) so one can quickly check if some value is present.

- \(\text{hash}(x) = x \mod p \) for \(p \) a prime close to \(n \)
 - or \(\text{hash}(x) = (ax + b) \mod p \)

- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur
Pseudo-Random Number Generation

Linear Congruential method

\[x_{n+1} = (a \cdot x_n + c) \mod m \]

Choose random \(x_0, a, c, m \) and produce a long sequence of \(x_n \)'s
Simple Ciphers

- **Caesar cipher**, $A = 1, B = 2, \ldots$
 - HELLO WORLD

- **Shift cipher**
 - $f(p) = (p + k) \mod 26$
 - $f^{-1}(p) = (p - k) \mod 26$

- **More general**
 - $f(p) = (ap + b) \mod 26$