De Morgan’s Laws

\[\overline{A \cup B} = \overline{A} \cap \overline{B} \]

Let \(U \) be the universe.

\[\overline{A \cap B} = \overline{A} \cup \overline{B} \]

It’s Boolean algebra again

- Definition for \(\cup \) based on \(\lor \)
 \[A \cup B = \{ x : (x \in A) \lor (x \in B) \} \]

- Definition for \(\cap \) based on \(\land \)
 \[A \cap B = \{ x : (x \in A) \land (x \in B) \} \]

- Complement works like \(\neg \)
 \[\overline{A} = \{ x : x \not\in A \} \]
 (with respect to universe \(U \))

Distributive Laws

\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
Representing Sets Using Bits

- Suppose universe \(U \) is \(\{1, 2, \ldots, n\} \)
- Can represent set \(B \subseteq U \) as a vector of bits:
 \[b_1 b_2 \ldots b_n \text{ where } b_i = 1 \text{ when } i \in B \]
 \[b_i = 0 \text{ when } i \notin B \]
 - Called the characteristic vector of set \(B \)
- Given characteristic vectors for \(A \) and \(B \)
 - What is characteristic vector for \(A \cup B \)? \(A \cap B \)?

UNIX/Linux File Permissions

- `ls -l`
 - `drwxr-xr-x` ... Documents/
 - `-rw-r--r--` ... file1
- Permissions maintained as bit vectors
 - Letter means bit is 1
 - "-" means bit is 0.

Bitwise Operations

<table>
<thead>
<tr>
<th></th>
<th>Java:</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101101</td>
<td>(z = x</td>
</tr>
<tr>
<td>0110111</td>
<td>(0111111)</td>
</tr>
<tr>
<td>0010100</td>
<td>(0000111)</td>
</tr>
<tr>
<td>00110111</td>
<td>(z = x & y)</td>
</tr>
<tr>
<td>01010101</td>
<td>(00001010)</td>
</tr>
<tr>
<td>00110111</td>
<td>(z = x \oplus y)</td>
</tr>
<tr>
<td>01101101</td>
<td>(01011010)</td>
</tr>
</tbody>
</table>

A Useful Identity

- If \(x \) and \(y \) are bits: \((x \oplus y) \oplus y = ? \)
Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice’s message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

CSE 311: Foundations of Computing

Fall 2014
Lecture 10: Functions, Modular arithmetic

Announcements

Homework 3 due now
Homework 2 Solutions available
Homework 4 out later today
Functions

- A function from A to B.
 - Every element of A is assigned to exactly one element of B.
 - We write $f: A \rightarrow B$.
- “Image of X” = $\{x : \exists y (y \in X \land x = f(y))\}$

- Domain of f is A
- Codomain of f is B

- Image of f = Image of domain = all the elements pointed to by something in the domain.

Is this a function? One-to-One? Onto?

Functional Examples

<table>
<thead>
<tr>
<th>Domain: Reals</th>
<th>One-to-one</th>
<th>Onto</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \mapsto x^3 - x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \mapsto e^x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \mapsto x^3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```java
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR + " seconds."
        );
    }
}
```
Division Theorem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r.$

$$q = \text{a div } d \quad r = \text{a mod } d$$

Note: $r \geq 0$ even if $a < 0$. Not quite the same as $a \% d$.

Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a is congruent to b modulo m if m divides $a - b$. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Arithmetic, mod 7

$$a + 7 = (a + b) \mod 7$$

$$a \times 7 = (a \times b) \mod 7$$

<table>
<thead>
<tr>
<th>$+$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Modular Arithmetic: Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \equiv 0 \pmod{2})</td>
<td>This statement is the same as saying “(A) is even”; so, any (A) that is even (including negative even numbers) will work.</td>
</tr>
<tr>
<td>(1 \equiv 0 \pmod{4})</td>
<td>This statement is false. If we take it mod 1 instead, then the statement is true.</td>
</tr>
</tbody>
</table>
| \(A \equiv -1 \pmod{17} \) | If \(A = 17x - 1 = 17x + 16 \), then it works. Note that \((m - 1) \mod m \)
\[
= ((m \mod m) + (-1 \mod m)) \mod m
= (0 + -1) \mod m
= -1 \mod m
\] |

Modular Arithmetic: A Property

Let \(a \) and \(b \) be integers, and let \(m \) be a positive integer. Then \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).