Structural Induction
(a) Recall the following definitions:

\[\text{len} (\varepsilon) = 0 \]
\[\text{len} (wa) = \text{len} (w) + 1, \text{for } w \in \Sigma^*, a \in \Sigma \]

\[x \cdot \varepsilon = x, \text{for } x \in \Sigma^* \]
\[x \cdot wa = (x \cdot w)a, \text{for } x \in \Sigma^*, a \in \Sigma \]

Consider the following recursive definition:

\[\text{stutter} (\varepsilon) = \varepsilon \]
\[\text{stutter} (wa) = \text{stutter} (w) \cdot aa, \text{for } w \in \Sigma^*, a \in \Sigma \]

Prove that \(\text{len} (\text{stutter} (w)) = 2 \text{len} (w) \) for all \(w \in \Sigma^* \).

Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring “000”.

CSE 311: Foundations of Computing I
Section: Structural Induction and Regular Expressions

1