Announcements

• Reading
 – 7th edition: p. 201 and 13.5
 – 6th edition: p. 177 and 12.5

• My office hours this week
 – Usual: today immediately after class until 2:50pm
 – Extra office hour: Thursday 11-12

• Homework 8 due Friday
 – Solutions available Friday night-Saturday online on password-protected page

• Final Exam, Monday, June 10, 2:30-4:20 pm MGH 389
 – Topic list and sample final exam problems have been posted
 – Comprehensive final, closed book, closed notes
 – Review session, Sunday, June 9, 4:00 pm EEB 125

Last lecture highlights

Turing machine = Finite control + Recording Medium + Focus of attention

Finite Control:

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1,s_2)</td>
</tr>
<tr>
<td>s_2</td>
<td>(H,s_3)</td>
</tr>
<tr>
<td>s_3</td>
<td>(H,s_3)</td>
</tr>
</tbody>
</table>

Recording Medium

<table>
<thead>
<tr>
<th>Tape Symbol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ _ 0 0 1 0 0 1 _</td>
<td></td>
</tr>
</tbody>
</table>

input x

output

output $P(x)$

• The Universal Turing Machine U
 – Takes as input: $(<P,x>)$ where $<P>$ is the code of a program and x is an input string
 – Simulates P on input x

• Same as a Program Interpreter
Last lecture highlights

Program P

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1, s_2)</td>
<td>(0, s_3)</td>
</tr>
<tr>
<td>s_2</td>
<td>(H, s_3)</td>
<td>(R, s_1)</td>
</tr>
<tr>
<td>s_3</td>
<td>(H, s_2)</td>
<td>(R, s_3)</td>
</tr>
</tbody>
</table>

Universal TM U

Program code P:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programs about Program Properties

- The Universal TM takes a program code $<P>$ as input, and an input x, and interprets P on x
 - Step by step by step by step...
- Can we write a TM that takes a program code $<P>$ as input and checks some property of the program?
 - Does P ever return the output “ERROR”?
 - Does P always return the output “ERROR”?
 - Does P halt on input x?

Halting Problem

- **Given**: the code of a program P and an input x for P, i.e. given $(<P>,x)$
- **Output**: 1 if P halts on input x
 - 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem

“The halting problem is undecidable”

Proof by contradiction

- Suppose that H is a Turing machine that solves the Halting problem

Function $D(x)$:

- if $H(x,x)=1$ then
 - while (true); /* loop forever */
- else
 - no-op; /* do nothing and halt */
- endif

- What does D do on input $<D>$?
 - Does it halt?
Does \(D \) halt on input \(<D>\)?

\[
\begin{align*}
\text{Function } D(x): \\
&\quad \text{if } H(x,x) = 1 \text{ then} \\
&\quad \quad \text{while (true); /* loop forever */} \\
&\quad \text{else} \\
&\quad \quad \text{no-op; /* do nothing and halt */} \\
&\quad \text{endif}
\end{align*}
\]

\(D \) halts on input \(<D>\)

\[\iff H \text{ outputs } 1 \text{ on input } (<D>,<D>)\]

[since \(H \) solves the halting problem and so \(H(<D>,x) \) outputs 1 iff \(D \) halts on input \(x \)]

\[\iff D \text{ runs forever on input } <D>\]

[since \(D \) goes into an infinite loop on \(x \) iff \(H(x,x)=1 \)]

SCOOPING THE LOOP SNOOPER

A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

No general procedure for bug checks succeeds.

Now, I won’t just assert that, I’ll show where it leads:
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called \(P \)
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and \(P \) gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs...

That’s it!

- We proved that there is no computer program that can solve the Halting Problem.

- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have

SCOOPING THE LOOP SNOOPER

... Here’s the trick that I’ll use -- and it’s simple to do.
I’ll define a procedure, which I will call \(Q \),
that will use \(P \)’s predictions of halting success
to stir up a terrible logical mess.

... And this program called \(Q \) wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of \(Q \) run on \(Q \)?

... Full poem at: http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
Another view of the proof undecidability of the Halting Problem

- Suppose that there is a program H that computes the answer to the Halting Problem.
- We will build a table with a row for each program (just like we did for uncountability of reals).
- If the supposed program H exists then the D program we constructed as before will exist and so be in the table.
- But D must have entries like the “flipped diagonal”
 - D can’t possibly be in the table.
 - Only assumption was that H exists. That must be false.

(P, x) entry is 1 if program P halts on input x and 0 if it runs forever.
Recall: Code for D assuming subroutine H that solves the Halting Problem

- Function $D(x)$:
 - if $H(x,x)=1$ then
 - while (true); /* loop forever */
 - else
 - no-op; /* do nothing and halt */
 - endif

- If D existed it would have a row different from every row of the table
- D can’t be a program so H cannot exist!

That’s it!

- We proved that there is no computer program that can solve the Halting Problem.

- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have
- The full story is even worse

The “Always Halting” problem

- **Given:** $<Q>$, the code of a program Q
- **Output:** 1 if Q halts on every input 0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:
- Show we could solve the Halting Problem if we had a solution for the “always halts” problem.
- No program solving for Halting Problem exists \Rightarrow no program solving the “always halts” problem exists
The “Always Halting” problem

Suppose we had a TM A for the Always Halting problem

The “Always ERROR” problem

• Given: <R>, the code of a program R
• Output: 1 if R always prints ERROR
 0 if R does not always print ERROR

Pitfalls

• Not every problem on programs is undecidable!
 Which of these is decidable?
• Input <P> and x
 Output: 1 if P prints “ERROR” on x after less than 100 steps
 0 otherwise
• Input <P> and x
 Output: 1 if P prints “ERROR” on x after more than 100 steps
 0 otherwise