Announcements

- Reading
 - 7th edition: p. 201 and 13.5
 - 6th edition: p. 177 and 12.5

- Topic list and sample final exam problems have been posted

- Final exam, Monday, June 10
 - 2:30-4:20 pm MGH 389.

Last lecture highlights

- Cardinality
- A set S is *countable* iff we can write it as $S = \{s_1, s_2, s_3, \ldots\}$ indexed by \mathbb{N}
- Set of rationals is countable
 - “dovetailing”
- Σ^* is countable
 - $\{0,1\}^* = \{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$
- Set of all (Java) programs is countable

Last lecture highlights

- The set of real numbers is not countable
 - “diagonalization”
 - $r_1^{D=0. \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad \ldots}$
 - $r_2 \quad 0 \quad 3 \quad \ldots$
 - $r_3 \quad 0 \quad 1 \quad 4 \quad 5 \quad 2 \quad 8 \quad 5 \quad 7 \quad 1 \quad 4 \quad \ldots$
 - $r_4 \quad 0 \quad 1 \quad 4 \quad 1 \quad 5 \quad 1 \quad 9 \quad 2 \quad 6 \quad 5 \quad \ldots$
 - $r_5 \quad 0 \quad 1 \quad 2 \quad 1 \quad 2 \quad 5 \quad 1 \quad 2 \quad 2 \quad \ldots$
 - $r_6 \quad 0 \quad 2 \quad 5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \ldots$
 - $r_7 \quad 0 \quad 7 \quad 1 \quad 8 \quad 2 \quad 8 \quad 1 \quad 8 \quad 5 \quad 2 \quad \ldots$
 - $r_8 \quad 0 \quad 6 \quad 1 \quad 8 \quad 0 \quad 3 \quad 3 \quad 9 \quad 4 \quad 5 \quad \ldots$
 - $\ldots \quad \ldots \quad \ldots$
- Why doesn’t this show that the rationals aren’t countable?
Last lecture highlights

• There exist functions that cannot be computed by any program
 – The set of all functions $f : \mathbb{N} \to \{0,1,...,9\}$ is not countable
 – The set of all (Java/C/C++) programs is countable
 – So there are simply more functions than programs

Do we care?

• Are any of these functions, ones that we would actually want to compute?
 – The argument does not even give any example of something that can’t be done, it just says that such an example exists
• We haven’t used much of anything about what computers (programs or people) can do
 – Once we figure that out, we’ll be able to show that some of these functions are really important

Before Java...more from our Brief History of Reasoning

• 1930’s
 – How can we formalize what algorithms are possible?
 • Turing machines (Turing, Post)
 – basis of modern computers
 • Lambda Calculus (Church)
 – basis for functional programming
 • μ-recursive functions (Kleene)
 – alternative functional programming basis

Turing Machines

Church-Turing Thesis
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

• Evidence
 – Intuitive justification
 – Huge numbers of equivalent models to TM’s based on radically different ideas
Components of Turing’s Intuitive Model of Computers

- **Finite Control**
 - Brain/CPU that has only a finite # of possible “states of mind”

- **Recording medium**
 - An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

- **Focus of attention**
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time

What is a Turing Machine?

- **Recording Medium**
 - An infinite read/write “tape” marked off into cells
 - Each cell can store one symbol or be “blank”
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape - starts on input

- **In each step, a Turing Machine**
 - Reads the currently scanned symbol
 - Based on state of mind and scanned symbol
 - Overwrites symbol in scanned cell
 - Moves read/write head left or right one cell
 - Changes to a new state
 - Each Turing Machine is specified by its finite set of rules

Sample Turing Machine

<table>
<thead>
<tr>
<th></th>
<th>_</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>(1,s_2)</td>
<td>(1,s_3)</td>
<td>(0,s_1)</td>
</tr>
<tr>
<td>s_2</td>
<td>(H,s_1)</td>
<td>(R,s_1)</td>
<td>(R,s_1)</td>
</tr>
<tr>
<td>s_3</td>
<td>(H,s_3)</td>
<td>(R,s_3)</td>
<td>(R,s_3)</td>
</tr>
</tbody>
</table>
What is a Turing Machine?

Turing Machine ≡ Ideal Java/C Program

• Ideal C/C++/Java programs
 – Just like the C/C++/Java you’re used to programming with, except you never run out of memory
 • constructor methods always succeed
 • malloc never fails
• Equivalent to Turing machines except a lot easier to program!
 – Turing machine definition is useful for breaking computation down into simplest steps
 – We only care about high level so we use programs

Turing’s idea: Machines as data

• Original Turing machine definition
 – A different “machine” M for each task
 – Each machine M is defined by a finite set of possible operations on finite set of symbols
 • M has a finite description as a sequence of symbols, its “code”
• You already are used to this idea:
 – We’ll write $\langle P \rangle$ for the code of program P
 – i.e. $\langle P \rangle$ is the program text as a sequence of ASCII symbols and P is what actually executes

Turing’s Idea: A Universal Turing Machine

• A Turing machine interpreter U
 – On input $\langle P \rangle$ and its input x, U outputs the same thing as P does on input x
 – At each step it decodes which operation P would have performed and simulates it.
• One Turing machine is enough
 – Basis for modern stored-program computer
 • Von Neumann studied Turing’s UTM design
Halting Problem

• **Given:** the code of a program \(P \) and an input \(x \) for \(P \), i.e. given \((\langle P \rangle, x) \)
• **Output:** 1 if \(P \) halts on input \(x \)
 0 if \(P \) does not halt on input \(x \)

Theorem (Turing): There is no program that solves the halting problem
“The halting problem is undecidable”

Proof by contradiction

• Suppose that \(H \) is a Turing machine that solves the Halting problem

 Function \(D(x) \):

 - if \(H(x,x)=1 \) then
 - while (true); /* loop forever */
 - else
 - no-op; /* do nothing and halt */
 - endif

• What does \(D \) do on input \(\langle D \rangle \)?
 – Does it halt?

That’s it!

• We proved that there is no computer program that can solve the Halting Problem.

• This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have

Does \(D \) halt on input \(\langle D \rangle \)?

\(D \) halts on input \(\langle D \rangle \)

\[\iff H \text{ outputs 1 on input } (\langle D \rangle, \langle D \rangle) \]

[since \(H \) solves the halting problem and so \(H(\langle D \rangle, x) \) outputs 1 iff \(D \) halts on input \(x \)]

\[\iff D \text{ runs forever on input } \langle D \rangle \]

[since \(D \) goes into an infinite loop on \(x \) iff \(H(x,x)=1 \)]