Announcements

- Reading assignments
 - 7th Edition, Sections 13.3 and 13.4
 - 6th Edition, Section 12.3 and 12.4

Last lecture highlights

Finite State Machines with output at states

State minimization

Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states.
Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 - Also can have edges labeled by empty string λ

Definition: The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Design an NFA with 4 states to recognize the set of binary strings whose 3rd from last character is a 1

Design an NFA to recognize the set of binary strings that contain 111 or have an even # of 1’s
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Note: One can also find a regular expression to describe the language recognized by any NFA but we won't prove that fact.

Regular expressions over Σ

- Basis:
 - \emptyset, λ are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*

Basis

- Case \emptyset:

- Case λ:

- Case a:
Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B.

Inductive Step

• Case ($A \cup B$):

Inductive Step

• Case (AB):

Inductive Step
Inductive Step

• Case (AB):

\[N_A \xrightarrow{\lambda} N_B \]

Inductive Step

• Case A*

\[N_A \]

Inductive Step

• Case A*

\[N_A \]

Build a NFA for \((01 \cup 1)^*0\)
Solution

\[(01 \cup 1)^*0\]

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Conversion of NFAs to a DFAs

- **Proof Idea:**
 - The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 - There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

- **New start state for DFA**
 - The set of all states reachable from the start state of the NFA using only edges labeled \(\lambda\)
Conversion of NFAs to a DFAs

- For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
 - Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by λ
 - T will be \emptyset if no edges from S labeled s exist

Example: NFA to DFA
Example: NFA to DFA

NFA

DFA

Example: NFA to DFA

NFA

DFA

Example: NFA to DFA

NFA

DFA

Example: NFA to DFA

NFA

DFA
Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - n-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary
 - Is the n^{th} char from the end a 1?

- The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms