Announcements

- Reading assignments
 - Today and Monday:
 - 7th Edition, Section 5.3 and pp. 878-880
 - 6th Edition, Section 4.3 and pp. 817-819

- Midterm Friday, May 10, MGH 389
 - Closed book, closed notes
 - Tables of inference rules and equivalences will be included on test
 - Sample questions from old midterms are now posted

Highlight from last time...
Recursive Definitions of Set S

- Recursive definition
 - Basis step: Some specific elements are in S
 - Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Highlight from last time...
Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by
 - Basis: $\lambda \in \Sigma^*$ (\(\lambda\) is the empty string)
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Functions on recursively defined sets

$\text{len } (\lambda) = 0$;
$\text{len } (wa) = 1 + \text{len}(w)$; for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:
$\lambda^R = \lambda$
$(wa)^R = aw^R$ for $w \in \Sigma^*$, $a \in \Sigma$

Concatenation:
$x \cdot \lambda = x$ for $x \in \Sigma^*$
$x \cdot wa = (x \cdot w)a$ for $x, w \in \Sigma^*$, $a \in \Sigma$

Rooted Binary trees

- **Basis:** \bullet is a rooted binary tree

- **Recursive Step:** If T_1 and T_2 are rooted binary trees then so is:

Structural Induction: Proving properties of recursively defined sets

How to prove $\forall x \in S. \ P(x)$ is true:

1. Let $P(x)$ be “...”. We will prove $P(x)$ for all $x \in S$
2. **Base Case:** Show that P is true for all specific elements of S mentioned in the **Basis step**
3. **Inductive Hypothesis:** Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the **Recursive step**
4. **Inductive Step:** Prove that P holds for each of the new elements constructed in the **Recursive step** using the named elements mentioned in the Inductive Hypothesis
5. Conclude that $\forall x \in S. \ P(x)$
Structural Induction versus Ordinary Induction

• Ordinary induction is a special case of structural induction:
 – Recursive Definition of \mathbb{N}
 • Basis: $0 \in \mathbb{N}$
 • Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$
 • Structural induction follows from ordinary induction
 • Let $Q(n)$ be true iff for all $x \in S$ that take n Recursive steps to be constructed, $P(x)$ is true.

Using Structural Induction

• Let S be given by
 – Basis: $6 \in S; 15 \in S$
 – Recursive: If $x, y \in S$, then $x+y \in S$
• Claim: Every element of S is divisible by 3

Using Structural Induction

• Let S be a set of strings over \{a,b\} defined as follows
 – Basis: $a \in S$
 – Recursive:
 • If $u \in S$ then $au \in S$ and $bau \in S$
 • If $u \in S$ and $v \in S$ then $uv \in S$
 • Claim: if $x \in S$ then x has more a’s than b’s

len(x•y)=len(x)+len(y) for all strings x and y

Let $P(w)$ be “For all strings x, len(x•w)=len(x)+len(w)”
For every rooted binary tree T

$$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$$

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0’s and 1’s

Regular Expressions over Σ

- Each is a “pattern” that specifies a set of strings
- Basis:
 - \emptyset, λ are regular expressions
 - a is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*

Each regular expression is a “pattern”

- λ matches the empty string
- a matches the one character string a
- $(A \cup B)$ matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A^* matches all strings that have any number of strings (even 0) that A matches, one after another
Examples

- 0^*
- 0^*1^*
- $(0 \cup 1)^*$
- $(0^*1^*)^*$
- $(0 \cup 1)^*0110(0 \cup 1)^*$
- $(0 \cup 1)^*(0110 \cup 100)(0 \cup 1)^*$

Regular expressions in practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers.
- Used in grep, a program that does pattern matching searches in UNIX/LINUX.
- Pattern matching using regular expressions is an essential feature of hypertext scripting language PHP used for web programming.
- Also in text processing programming language Perl.

Regular Expressions in PHP

- `int preg_match` (string $pattern, string $subject,...)
- $pattern$ syntax:
 - `[01]` a 0 or a 1 ^ start of string $ end of string
 - `[0-9]` any single digit \ . period \ , comma \ - minus
 - `.` any single character
 - `ab` a followed by b `(AB)`
 - `(a|b)` a or b `(A \cup B)`
 - `a?` zero or one of a `(A \cup \lambda)`
 - `a*` zero or more of a `A^`
 - `a+` one or more of a `AA^`
- e.g. `^[\-+]? [0-9] * (\ . | \ ,) ? [0-9] +$` General form of decimal number e.g. 9.12 or -9.8 (Europe)

More examples

- All binary strings that have an even # of 1’s
- All binary strings that don’t contain 101
Regular expressions can’t specify everything we might want

• **Fact**: Not all sets of strings can be specified by regular expressions
 – One example is the set of binary strings with equal #’s of 0’s and 1’s