Announcements

- Reading assignments
 - Today:
 - 5.2-5.3 7th Edition
 - 4.2-5.3 6th Edition

- Midterm Friday, May 10, MGH 389
 - Closed book, closed notes
 - Tables of inference rules and equivalences will be included on test
 - Sample questions from old midterms are now posted

Highlights from last lecture

- Mathematical Induction
 \[P(0) \]
 \[\forall k \geq 0 \ (P(k) \rightarrow P(k+1)) \]
 \[\therefore \forall n \geq 0 \ P(n) \]

- Induction proof layout:
 1. By induction we will show that \(P(n) \) is true for every \(n \geq 0 \)
 2. Base Case: Prove \(P(0) \)
 3. Inductive Hypothesis: Assume that \(P(k) \) is true for some arbitrary integer \(k \geq 0 \)
 4. Inductive Step: Prove that \(P(k+1) \) is true using Inductive Hypothesis that \(P(k) \) is true
 5. Conclusion: Result follows by induction

Strong Induction

\[P(0) \]
\[\forall k ((P(0) \land P(1) \land P(2) \land \ldots \land P(k)) \rightarrow P(k+1)) \]
\[\therefore \forall n P(n) \]

Follows from ordinary induction applied to
\[Q(n) = P(0) \land P(1) \land P(2) \land \ldots \land P(n) \]
Strong Induction English Proofs

1. By induction we will show that \(P(n) \) is true for every \(n \geq 0 \)
2. Base Case: Prove \(P(0) \)
3. Inductive Hypothesis:
 Assume that for some arbitrary integer \(k \geq 0 \), \(P(j) \) is true for every \(j \) from 0 to \(k \)
4. Inductive Step:
 Prove that \(P(k+1) \) is true using the Inductive Hypothesis (that \(P(j) \) is true for all values \(\leq k \))
5. Conclusion: Result follows by induction

Every integer \(\geq 2 \) is the product of primes

Recursive Definitions of Functions

- \(F(0) = 0; \ F(n + 1) = F(n) + 1 \) for all \(n \geq 0 \)
- \(G(0) = 1; \ G(n + 1) = 2 \times G(n) \) for all \(n \geq 0 \)
- \(0! = 1; \ (n+1)! = (n+1) \times n! \) for all \(n \geq 0 \)
- \(H(0) = 1; \ H(n + 1) = 2^H(n) \) for all \(n \geq 0 \)

Fibonacci Numbers

- \(f_0 = 0; \ f_1 = 1; \ f_n = f_{n-1} + f_{n-2} \) for all \(n \geq 2 \)
Bounding the Fibonacci Numbers

• Theorem: \(2^{n/2-1} \leq f_n < 2^n\) for all \(n \geq 2\)

Fibonacci numbers and the running time of Euclid’s algorithm

Lamé’s Theorem: Suppose that Euclid’s algorithm takes \(n\) steps for \(\gcd(a,b)\) with \(a>b\), then \(a \geq f_{n+1}\) (which we know is \(\geq 2^{n/2}\))

\[\begin{align*}
\text{Set } r_{n+1} &= a, r_n = b \text{ then Euclid’s alg. computes} \\
r_{n+1} &= q_n r_n + r_{n-1} \\
r_n &= q_{n-1} r_{n-1} + r_{n-2} \\
& \vdots \\
r_3 &= q_2 r_2 + r_1 \\
r_2 &= q_1 r_1 + 0
\end{align*}\]

Recursive Definitions of Sets

• Recursive definition
 – Basis step: \(0 \in S\)
 – Recursive step: \(x \in S\) then \(x+2 \in S\)
 – Exclusion rule: Every element in \(S\) follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: \(6 \in S; \ 15 \in S;\)

Recursive: if \(x, y \in S\), then \(x + y \in S;\)

\[\begin{align*}
\text{Basis: } & [1, 1, 0] \in S, [0, 1, 1] \in S; \\
\text{Recursive: } & \begin{cases}
in [x, y, z] \in S, \ \alpha \in R, \text{ then } [\alpha x, \alpha y, \alpha z] \in S \\
if [x_1, y_1, z_1], [x_2, y_2, z_2] \in S \\
\text{then } [x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S
\end{cases}
\end{align*}\]

Powers of 3
Recursive Definitions of Sets:
General Form

- Recursive definition
 - Basis step: Some specific elements are in S
 - Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by
 - Basis: $\lambda \in \Sigma^*$ (\(\lambda\) is the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis: λ is a palindrome and any $a \in \Sigma$ is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All binary strings with no 1’s before 0’s