announcements

• Hand in Homework 9 now
 – Pick up all old homework and exams now
• Review session
 – Sunday, 3pm, EEB 125
 – List of Final Exam Topics and sampling of some typical kinds of exam questions on the web
 – Bring your questions to the review session!
• Final exam
 – Monday, 2:30-4:20 pm or 4:30-6:20, Kane 220
 – Fill in Catalyst Survey by Sunday, 3pm to choose.

highlights: halting problem

\[
\begin{align*}
\langle P \rangle \quad &\xrightarrow{H} \begin{cases} 1 & \text{if } P(x) \text{ halts} \\ 0 & \text{if } P(x) \text{ does not halt} \end{cases} \\
&\xrightarrow{x} 1 \text{ if } Q(\langle P \rangle) \text{ always halts} \\
&\xrightarrow{A} 0 \text{ if } Q(\langle P \rangle) \text{ sometimes does not halt}
\end{align*}
\]

highlights: “always halts” problem
the “always ERROR” problem

- Given: <R>, the code of a program R
- Output: 1 if R always prints ERROR
 0 if R does not always print ERROR

Given: Given: Given: Given:

Output:

The code of a program

Suppose we had a TM E for the ERROR problem

program equivalence

Input: the codes of two programs, <P> and <Q>
Output: 1 if P produces the same output as Q does on every input
 0 otherwise

general phenomenon: can’t tell a book by its cover

Rice's Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given its code <P>!
quick lessons

• Don’t rely on the idea of improved compilers and programming languages to eliminate major programming errors
 – truly safe languages can’t possibly do general computation
• Document your code!!!!
 – there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

about the course

• From the CSE catalog:
 – CSE 311 Foundations of Computing I (4)
 Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.
• What this course is about:
 – Foundational structures for the practice of computer science and engineering

propositional logic

• Statements with truth values
 – The Washington State flag is red
 – It snowed in Whistler, BC on January 4, 2011.
 – Rick Perry won the Iowa straw poll
 – Space aliens landed in Roswell, New Mexico
 – If n is an integer greater than two, then the equation $a^n + b^n = c^n$ has no solutions in non-zero integers a, b, and c.
 – Propositional variables: p, q, r, s, . . .
 – Truth values: T for true, F for false
• Compound propositions
 – Negation (not) $\neg p$
 – Conjunction (and) $p \land q$
 – Disjunction (or) $p \lor q$
 – Exclusive or $p \oplus q$
 – Implication $p \rightarrow q$
 – Biconditional $p \leftrightarrow q$
You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old.

- q: you can ride the roller coaster
- r: you are under 4 feet tall
- s: you are older than 16

$$(r \land \neg s) \rightarrow \neg q$$

Logical Equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

- $p \lor \neg p$
- $p \oplus p$
- $(p \rightarrow q) \land p$
- $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology
- The notation $p \equiv q$ denotes p and q are logically equivalent
- De Morgan’s Laws:
 - $\neg (p \land q) \equiv \neg p \lor \neg q$
 - $\neg (p \lor q) \equiv \neg p \land \neg q$

Digital Circuits

- Computing with logic
 - T corresponds to 1 or “high” voltage
 - F corresponds to 0 or “low” voltage

- Gates
 - Take inputs and produce outputs
 - Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 - Only symmetric ones (order of inputs irrelevant)
combinational logic circuits

Wires can send one value to multiple gates

a simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

\[\begin{array}{ccc|cc}
A & B & Cin & Cout & S \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
\end{array} \]

\[\begin{align*}
Cout &= B \text{ Cin} + A \text{ Cin} + A \text{ B} \\
S &= A' B' \text{ Cin} + A' B \text{ Cin}' + A B' \text{ Cin}' + A B \text{ Cin} \\
&= A' (B' \text{ Cin} + B \text{ Cin}') + A (B' \text{ Cin}' + B \text{ Cin}) \\
&= A' Z + A Z' \\
&= A \text{ xor } Z = A \text{ xor } (B \text{ xor } \text{ Cin})
\end{align*} \]

boolean algebra

- An algebraic structure consists of
 - a set of elements B
 - binary operations \{ + , \cdot \}
 - and a unary operation \{ ' \}
 - such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: \(a + b \) is in B
3. commutativity: \(a + b = b + a \)
4. associativity: \(a + (b + c) = (a + b) + c \)
5. identity: \(a + 0 = a \)
6. distributivity: \(a + (b \cdot c) = (a + b) \cdot (a + c) \)
7. complementarity: \(a + a' = 1 \)

George Boole – 1854

sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

\[\begin{array}{cccccccc}
A & B & C & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \]

\[F = A'B'C' + A'BC' + AB'C' + ABC' + ABC \]

\[F' = A'B'C' + A'BC' + AB'C' \]
predicate calculus

- **Predicate or Propositional Function**
 - A function that returns a truth value
- “x is a cat”
- “student x has taken course y”
- “x > y”
- \(\forall x \ P(x) : P(x) \) is true for every \(x \) in the domain
- \(\exists x \ P(x) : \) There is an \(x \) in the domain for which \(P(x) \) is true

proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

simple propositional inference rules

- Excluded middle
 \[\vdash p \lor \neg p \]
- Two inference rules per binary connective one to eliminate it, one to introduce it.

\[
\begin{align*}
\text{p} \land \text{q} & \quad \text{p, q} \\
\vdash \text{p, q} & \quad \vdash \text{p} \land \text{q} \\
\text{p} \lor \text{q}, \neg \text{p} & \quad \text{p} \\
\vdash \text{q} & \quad \vdash \text{p} \lor \text{q}, \text{q} \lor \text{p} \\
p, p \rightarrow q & \quad \text{p} \Rightarrow \text{q} \\
\vdash \text{q} & \quad \vdash p \rightarrow q
\end{align*}
\]

statements with quantifiers

- \(\forall x \ (\text{Even}(x) \lor \text{Odd}(x)) \)
- \(\exists x \ (\text{Even}(x) \land \text{Prime}(x)) \)
- \(\forall x \exists y \ (\text{Greater}(y, x) \land \text{Prime}(y)) \)
- \(\forall x \ (\text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))) \)
- \(\exists x \exists y \ (\text{Equal}(x, y + 2) \land \text{Prime}(x) \land \text{Prime}(y)) \)

Domain: Positive Integers

Even(x)
Odd(x)
Prime(x)
Greater(x, y)
Equal(x, y)
inference rules for quantifiers

\[
\begin{align*}
P(c) \text{ for some } c & \quad \therefore \exists x \ P(x) \quad \forall x \ P(x) \quad \therefore \ P(a) \text{ for any } a \\
\end{align*}
\]

“Let a be anything”...\(P(a)\)

\[
\begin{align*}
\therefore \forall x \ P(x) & \quad \exists x \ P(x) \quad \therefore \ P(c) \text{ for some special } c
\end{align*}
\]

even and odd

\[
\begin{align*}
\text{Even}(x) & \equiv \exists y \ (x=2y) \\
\text{Odd}(x) & \equiv \exists y \ (x=2y+1) \\
\text{Domain: Integers}
\end{align*}
\]

- Prove: “The square of every odd number is odd”
 English proof of: \(\forall x \ (\text{Odd}(x) \to \text{Odd}(x^2))\)

Let \(x\) be an odd number.
Then \(x=2k+1\) for some integer \(k\) (depending on \(x\))
Therefore \(x^2=(2k+1)^2= 4k^2+4k+1=2(2k^2+2k)+1.\)
Since \(2k^2+2k\) is an integer, \(x^2\) is odd.

characteristic vectors

- Let \(U = \{1, \ldots, 10\}\), represent the set \(\{1,3,4,8,9\}\) with

 \[
 1011000110
 \]

- Bit operations:
 - \(0110110100 \lor 0011010110 = 0111110110\)
 - \(\text{ls} -l\)

- `drwxr-xr-x ... Documents/`
- `rw-r--r-- ... file1`

one-time pad

- Alice and Bob privately share random \(n\)-bit vector \(K\)
 - Eve does not know \(K\)

- Later, Alice has \(n\)-bit message \(m\) to send to Bob
 - Alice computes \(C = m \oplus K\)
 - Alice sends \(C\) to Bob
 - Bob computes \(m = C \oplus K\) which is \((m \oplus K) \oplus K\)

- Eve cannot figure out \(m\) from \(C\) unless she can guess \(K\)
arithmetic mod 7

- \(a +_7 b = (a + b) \mod 7 \)
- \(a \times_7 b = (a \times b) \mod 7 \)

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

division theorem

Let \(a \) be an integer and \(d \) a positive integer. Then there are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

\[
q = a \div d \quad r = a \mod d
\]

modular arithmetic

Let \(a \) and \(b \) be integers, and \(m \) be a positive integer. We say \(a \) is congruent to \(b \) modulo \(m \) if \(m \) divides \(a - b \). We use the notation \(a \equiv b \pmod{m} \) to indicate that \(a \) is congruent to \(b \) modulo \(m \).

Let \(a \) and \(b \) be integers, and let \(m \) be a positive integer. Then \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

Let \(m \) be a positive integer. If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then

\[
\begin{align*}
 a + c & \equiv b + d \pmod{m} \\
 ac & \equiv bd \pmod{m}
\end{align*}
\]

Let \(a \) and \(b \) be integers, and let \(m \) be a positive integer. Then \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

integer representation

Signed integer representation

Suppose \(-2^{n-1} < x < 2^{n-1}\)
First bit as the sign, n-1 bits for the value

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{binary})</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0110 0011</td>
</tr>
<tr>
<td>-18</td>
<td>1001 0010</td>
</tr>
</tbody>
</table>

Two's complement representation

Suppose \(0 \leq x < 2^{n-1}\),
\(x \) is represented by the binary representation of \(x \)
\(-x\) is represented by the binary representation of \(2^n-x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{binary})</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0110 0011</td>
</tr>
<tr>
<td>-18</td>
<td>1110 1110</td>
</tr>
</tbody>
</table>
hashing

- Map values from a large domain, 0...M-1 in a much smaller domain, 0...n-1
- Index lookup
- Test for equality
- Hash(x) = x mod p
 - (or Hash(x) = (ax + b) mod p)
- Often want the hash function to depend on all of the bits of the data
 - Collision management

modular exponentiation

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>1</th>
<th>a²</th>
<th>a³</th>
<th>a⁴</th>
<th>a⁵</th>
<th>a⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Arithmetic mod 7

fast exponentiation: repeated squaring

```csharp
namespace _312ConsoleApp
{
    class Program
    {
        static void Main(string[] args)
        {
            FastExp(1, 4, 10000);
            System.Console.ReadLine();
        }

        static int FastExp(int w, int x, int modulus) {
            long v = (long)x;
            int i = 1;
            while (v != 0)
            {
                if (v % 2 == 1) { i = i * w % modulus; }
                v = v / 2;
                w = w * w % modulus;
            }
            return i;
        }
    }
}
```

primality

An integer \(p \) greater than 1 is called prime if the only positive factors of \(p \) are 1 and \(p \).

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization
gcd and factoring

\[a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200 \]
\[b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750 \]

\[\text{GCD}(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)} \]

euclid's algorithm

- \(\text{GCD}(x, y) = \text{GCD}(y, x \mod y) \)

```c
int GCD(int a, int b){ /* a >= b, b > 0 */
    int tmp;
    int x = a;
    int y = b;
    while (y > 0){
        tmp = x % y;
        x = y;
        y = tmp;
    }
    return x;
}
```

multiplicative inverse mod m

Suppose \(\text{GCD}(a, m) = 1 \)

By Bézoit's Theorem, there exist integers \(s \) and \(t \) such that \(sa + tm = 1 \).

\(s \mod m \) is the multiplicative inverse of \(a \):

\[1 = (sa + tm) \mod m = sa \mod m \]

induction proofs

\[P(0) \]
\[\forall k (P(k) \rightarrow P(k+1)) \]
\[\therefore \forall n P(n) \]

1. Prove \(P(0) \)
2. Let \(k \) be an arbitrary integer \(\geq 0 \)
3. Assume that \(P(k) \) is true
4. ...
5. Prove \(P(k+1) \) is true
6. \(P(k) \rightarrow P(k+1) \) Direct Proof Rule
7. \(\forall k (P(k) \rightarrow P(k+1)) \) Intro \(\forall \) from 2-6
8. \(\forall n P(n) \) Induction Rule 1&7
strong induction

\[
P(0) \\forall k ((P(0) \land P(1) \land P(2) \land \ldots \land P(k)) \rightarrow P(k+1))
\]
\[
\therefore \forall n P(n)
\]

recursive definitions of functions

- \[F(0) = 0; \ F(n + 1) = F(n) + 1;\]
- \[G(0) = 1; \ G(n + 1) = 2 \times G(n);\]
- \[0! = 1; \ (n+1)! = (n+1) \times n!\]
- \[f_0 = 0; \ f_1 = 1; \ f_n = f_{n-1} + f_{n-2}\]

strings

- The set \(\Sigma^*\) of strings over the alphabet \(\Sigma\) is defined
 - Basis: \(\lambda \in \Sigma\) (\(\lambda\) is the empty string)
 - Recursive: if \(w \in \Sigma^*, x \in \Sigma\), then \(wx \in \Sigma^*\)

- Palindromes: strings that are the same backwards and forwards.
 - Basis: \(\lambda\) is a palindrome and any \(a \in \Sigma\) is a palindrome
 - If \(p\) is a palindrome then \(apa\) is a palindrome for every \(a \in \Sigma\)

function definitions on recursively defined sets

\[
\text{Len}(\lambda) = 0;
\]
\[
\text{Len}(wx) = 1 + \text{Len}(w); \text{ for } w \in \Sigma^*, x \in \Sigma
\]
\[
\text{Concat}(w, \lambda) = w \text{ for } w \in \Sigma^*
\]
\[
\text{Concat}(w_1, w_2x) = \text{Concat}(w_1, w_2)x \text{ for } w_1, w_2 \text{ in } \Sigma^*, x \in \Sigma
\]

Prove:
\[
\text{Len}(\text{Concat}(x,y))=\text{Len}(x)+\text{Len}(y) \text{ for all strings } x \text{ and } y
\]
rooted binary trees

- Basis: ● is a rooted binary tree
- Recursive Step: If \(T_1 \) and \(T_2 \) are rooted

binary trees then so is:

functions defined on rooted binary trees

- size(●)=1
- size(\(T_1 \rightarrow T_2 \)) = 1+size(\(T_1 \))\+size(\(T_2 \))
- height(●)=0
- height(\(T_1 \rightarrow T_2 \))=1+max{height(\(T_1 \)),height(\(T_2 \))}

Prove:
For every rooted binary tree \(T \), size(\(T \)) \leq 2^{height(\(T \))} - 1

regular expressions over \(\Sigma \)

- Each is a “pattern” that specifies a set of strings
- Basis:
 - \(\emptyset \), \(\lambda \) are regular expressions
 - \(a \) is a regular expression for any \(a \in \Sigma \)
- Recursive step:
 - If \(A \) and \(B \) are regular expressions then so are:
 - \(A \cup B \)
 - \(AB \)
 - \(A^* \)

regular expressions

- \(0^* \)
- \(0^*1^* \)
- \((0 \cup 1)^* \)
- \((0^*1^*)^* \)
- \((0 \cup 1)^* 0110 (0 \cup 1)^* \)
- \((0 \cup 1)^* (0110 \cup 100)(0 \cup 1)^* \)
context-free grammars

- Example: \[S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \lambda \]

- Example: \[S \rightarrow 0S \mid S1 \mid \lambda \]

Grammar for \(\{0^n1^n : n \geq 0\} \) all strings with same # of 0’s and 1’s with all 0’s before 1’s.

- Example: \[S \rightarrow (S) \mid SS \mid \lambda \]

precedence in simple arithmetic expressions

- **E** – expression (start symbol)
- **T** – term **F** – factor **I** – identifier **N** - number

 \[\begin{align*}
 E &\rightarrow T \mid E+T \\
 T &\rightarrow F \mid F*T \\
 F &\rightarrow (E) \mid I \mid N \\
 I &\rightarrow x \mid y \mid z \\
 N &\rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
 \end{align*} \]

bnf grammar for c

```plaintext
statement: ((identifier | "case" constant-expression | "default") ".")*  
  (expression? ":" | 
  block |  
  "if" "(" expression ")" statement |  
  "if" "(" expression ")" statement "else" statement |  
  "switch" "(" expression ")" statement |  
  "while" "(" expression ")" statement |  
  "do" statement "while" "(" expression ")" ";" |  
  "for" "(" expression? ";" expression? ";" expression? ")" statement |  
  "goto" identifier ";" |  
  "continue" ";" |  
  "break" ";" |  
  "return" expression; ";" 
  
  block: "(" declaration* statement ")" 
  
  expression: assignment-expression* 
  
  assignment-expression: 
 URNXexpression 
  
  UNARY-expression: "-" | "++" | "--" | "*" | "&" | "sizeof" | "(" | "vector" | 
  
  C-expression: 
  
  logical-OR-expression: "||" expression "||" conditional-expression 
```
definitions for relations

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set,
A binary relation on A is a subset of $A \times A$

Let R be a relation on A

- R is reflexive iff $(a,a) \in R$ for every $a \in A$
- R is symmetric iff $(a,b) \in R$ implies $(b,a) \in R$
- R is antisymmetric iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \not\in R$
- R is transitive iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

combining relations

Let R be a relation from A to B
Let S be a relation from B to C
The composite of R and S, $S \circ R$ is the relation from A to C defined

$S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

relations

$(a,b) \in$ Parent: b is a parent of a
$(a,b) \in$ Sister: b is a sister of a
Aunt = Sister ° Parent
Grandparent = Parent ° Parent

R^2 = R ° R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R\}

R^0 = \{(a,a) \mid a \in A\}

R^1 = R

R^{n+1} = R^n ° R

n-ary relations

Let A_1, A_2, \ldots, A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times \ldots \times A_n$.

<table>
<thead>
<tr>
<th>Student_ID</th>
<th>Name</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>328012098</td>
<td>Knuth</td>
<td>4.00</td>
</tr>
<tr>
<td>481080220</td>
<td>Von Neuman</td>
<td>3.78</td>
</tr>
<tr>
<td>238082388</td>
<td>Russell</td>
<td>3.85</td>
</tr>
<tr>
<td>238001920</td>
<td>Einstein</td>
<td>2.11</td>
</tr>
<tr>
<td>1727017</td>
<td>Newton</td>
<td>3.61</td>
</tr>
<tr>
<td>348882811</td>
<td>Karp</td>
<td>3.98</td>
</tr>
<tr>
<td>2921938</td>
<td>Bernoulli</td>
<td>3.21</td>
</tr>
<tr>
<td>2921939</td>
<td>Bernoulli</td>
<td>3.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student_ID</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>328012098</td>
<td>CS</td>
</tr>
<tr>
<td>481080220</td>
<td>CS</td>
</tr>
<tr>
<td>238082388</td>
<td>Mathematics</td>
</tr>
<tr>
<td>238001920</td>
<td>Philosophy</td>
</tr>
<tr>
<td>1727017</td>
<td>Physics</td>
</tr>
<tr>
<td>348882811</td>
<td>CS</td>
</tr>
<tr>
<td>1727017</td>
<td>Physics</td>
</tr>
<tr>
<td>2921938</td>
<td>Mathematics</td>
</tr>
<tr>
<td>2921939</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>
Matrix Representation for Relations

Relation \(R \) on \(A = \{a_1, \ldots, a_p\} \)

\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}
\]

Let \(R \) be a relation on a set \(A \). There is a path of length \(n \) from \(a \) to \(b \) if and only if \((a,b) \in R^n\)

\((a,b)\) is in the transitive-reflexive closure of \(R \) if and only if there is a path from \(a \) to \(b \). (Note: by definition, there is a path of length 0 from \(a \) to \(a \).)

Finite State Machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is the set of strings that reach a final state.

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_0)</td>
<td>(s_1)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_0)</td>
<td>(s_2)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_0)</td>
<td>(s_3)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_3)</td>
<td>(s_3)</td>
</tr>
</tbody>
</table>
accept strings with odd # of 1's and odd # of 0's

accept strings with a 1 three positions from the end

product construction

– Combining FSMs to check two properties at once
 New states record states of both FSMs

state machines with output

<table>
<thead>
<tr>
<th>State</th>
<th>L</th>
<th>R</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>s_2</td>
<td>Beep</td>
</tr>
<tr>
<td>s_2</td>
<td>s_3</td>
<td>s_3</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>s_2</td>
<td>s_4</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>s_3</td>
<td>s_4</td>
<td>Beep</td>
</tr>
</tbody>
</table>

“Tug-of-war”
vending machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

state minimization

Finite State Machines with output at states

another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state
nondeterministic finite automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 - Also can have edges labeled by empty string λ
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

Building a NFA from a regular expression

$(01 \cup 1)^*0$

NFA to DFA: subset construction
binary palindromes B cannot be recognized by any DFA

Consider the infinite set of strings $S=\{\lambda, 0, 00, 000, 0000, \ldots\}$

Claim: No two strings in S can end at the same state of any DFA for B, so no such DFA can exist

Proof: Suppose $n \neq m$ and 0^n and 0^m end at the same state p.
Since 0^n10^n is in B, following 10^n after state p must lead to a final state.
But then the DFA would accept 0^m10^n which is a contradiction

the real numbers are not countable

• “diagonalization”

<table>
<thead>
<tr>
<th>ℓ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1^{D}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>r_3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>r_5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>r_6</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>r_7</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>r_8</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

...

cardinality

• A set S is countable iff we can write it as $S=\{s_1, s_2, s_3, \ldots\}$ indexed by \mathbb{N}

• Set of integers is countable
 $\{-0, 1, 1, -2, 2, 3, -3, 4, \ldots\}$

• Set of rationals is countable
 “dovetailing”

• Σ^* is countable
 $\{0, 1\}^* = \{0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$

• Set of all (Java) programs is countable

general models of computation

Control structures with infinite storage
Many models
 Turing machines
 Functional
 Recursion
 Java programs

Church-Turing Thesis
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine
what is a turing machine?

universal turing machine

- The Universal Turing Machine U
 - Takes as input: $(<P>,x)$ where $<P>$ is the code of a program and x is an input string
 - Simulates P on input x
- Same as a Program Interpreter

halting problem

- Given: the code of a program P and an input x for P, i.e. given $(<P>,x)$
- Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem
“The halting problem is undecidable”

suppose $H(<P>,x)$ solves the halting problem

Function $D(x)$:

```
if H(x,x)=1 then
  while (true); /* loop forever */
else
  no-op; /* do nothing and halt */
endif
```

Does D halt on input $<D>$?

D halts on input $<D>$

\iff H outputs 1 on input $(<D>,<D>)$

[since H solves the halting problem and so $H(<D>,x)$ outputs 1 iff D halts on input x]

\iff D runs forever on input $<D>$

[since D goes into an infinite loop on x iff $H(x,x)=1$]
program equivalence

Input: the codes of two programs, \(<P>\) and \(<Q>\)

Output:
1 if \(P\) produces the same output as \(Q\) does on every input
0 otherwise

The equivalent program problem is undecidable

Teaching evaluation

- Please answer the questions on both sides of the form. This includes the ABET questions on the back