Fall 2013
Lecture 27: Turing machines and decidability

highlights

• Cardinality
 • A set S is countable iff we can write it as $S = \{s_1, s_2, s_3, \ldots\}$ indexed by \mathbb{N}
 • Set of rationals is countable
 – “dovetailing”
 • Σ^* is countable
 – $\{0,1\}^* = \{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$
 • Set of all (Java) programs is countable

what about the real numbers?

Q: Is every set is countable?

A: Theorem [Cantor] The set of real numbers (even just between 0 and 1) is NOT countable

Proof is by contradiction using a new method called diagonalization

proof by contradiction

• Suppose that $\mathbb{R}^{(0,1)}$ is countable
• Then there is some listing of all elements $\mathbb{R}^{(0,1)} = \{r_1, r_2, r_3, r_4, \ldots\}$
• We will prove that in such a listing there must be at least one missing element which contradicts statement “$\mathbb{R}^{(0,1)}$ is countable”
• The missing element will be found by looking at the decimal expansions of $r_1, r_2, r_3, r_4, \ldots$
real numbers between 0 and 1: $\mathbb{R}^{[0,1)}$

- Every number between 0 and 1 has an infinite decimal expansion:

 $1/2 = 0.\overline{5}$
 $1/3 = 0.\overline{3}$
 $1/7 = 0.\overline{142857}$
 $\pi \approx 0.\overline{141592}$
 $1/5 = 0.\overline{2}$

Representations of real numbers as decimals

Representation is unique except for the cases that decimal ends in all 0’s or all 9’s.

$x = 0.\overline{19999}$
$10x = 1.\overline{9999}$
$9x = 1.8$ so $x = 0.\overline{2}$

Won’t allow the representations ending in all 9’s

All other representations give different elements of $\mathbb{R}^{[0,1)}$

supposed listing of $\mathbb{R}^{[0,1)}$

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
<th>r_4</th>
<th>r_5</th>
<th>r_6</th>
<th>r_7</th>
<th>r_8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.6</td>
<td>...</td>
</tr>
</tbody>
</table>

supposed listing of $\mathbb{R}^{[0,1)}$

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
<th>r_4</th>
<th>r_5</th>
<th>r_6</th>
<th>r_7</th>
<th>r_8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.6</td>
<td>...</td>
</tr>
</tbody>
</table>

...
flipped diagonal

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flipping Rule:</td>
<td>If digit is 5, make it 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>r</td>
<td>0.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ...

flipped diagonal number D

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D is in $\mathbb{R}^{[0,1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>But for all n, we have $D \neq r_n$ since they differ on n^{th} digit (which is not 0 or 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow list was incomplete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow $\mathbb{R}^{[0,1)}$ is not countable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

why doesn’t this show that the rationals aren’t countable?

- The set of real numbers is not countable

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>D_2</td>
<td>0.</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D_3</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>D_4</td>
<td>0.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>D_5</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D_6</td>
<td>0.</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>D_7</td>
<td>0.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>D_8</td>
<td>0.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ...

flipped diagonal number D

- The set of all functions $f : \mathbb{N} \rightarrow \{0,1,...,9\}$ is not countable
• There exist functions that cannot be computed by any program
 – The set of all functions $f : \mathbb{N} \rightarrow \{0,1,...,9\}$ is not countable
 – The set of all (Java/C/C++) programs is countable
 – So there are simply more functions than programs

• Are any of these functions, ones that we would actually want to compute?
 – The argument does not even give any example of something that can’t be done, it just says that such an example exists

• We haven’t used much of anything about what computers (programs or people) can do
 – Once we figure that out, we’ll be able to show that some of these functions are really important

before Java...more from our brief history of reasoning

• 1930’s
 – How can we formalize what algorithms are possible?
 Turing machines (Turing, Post)
 basis of modern computers
 Lambda Calculus (Church)
 basis for functional programming
 μ-recursive functions (Kleene)
 alternative functional programming basis

Church-Turing Thesis
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

• Evidence
 – Intuitive justification
 – Huge numbers of equivalent models to TM’s based on radically different ideas
components of Turing’s intuitive model of computation

• **Finite Control**
 – Brain/CPU that has only a finite # of possible “states of mind”

• **Recording medium**
 – An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 – Input also supplied on the scratch paper

• **Focus of attention**
 – Finite control can only focus on a small portion of the recording medium at once
 – Focus of attention can only shift a small amount at a time

what is a Turing machine?

• **Recording medium**
 – An infinite read/write “tape” marked off into cells
 – Each cell can store one symbol or be “blank”
 – Tape is initially all blank except a few cells of the tape containing the input string
 – Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
 – Reads the currently scanned symbol
 – Based on state of mind and scanned symbol
 - Overwrites symbol in scanned cell
 - Moves read/write head left or right one cell
 - Changes to a new state

• Each Turing Machine is specified by its finite set of rules

sample Turing machine

<table>
<thead>
<tr>
<th></th>
<th>_</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁</td>
<td>(1,s₂)</td>
<td>(1,s₂)</td>
<td>(0,s₂)</td>
</tr>
<tr>
<td>s₂</td>
<td>(H,s₃)</td>
<td>(R,s₁)</td>
<td>(R,s₁)</td>
</tr>
<tr>
<td>s₃</td>
<td>(H,s₃)</td>
<td>(R,s₁)</td>
<td>(R,s₁)</td>
</tr>
</tbody>
</table>

_ _ 1 1 0 1 1 _ _
what is a Turing machine?

turing machine ≡ ideal Java/C program

- Ideal C/C++/Java programs
 - Just like the C/C++/Java you’re used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - `malloc` never fails
- Equivalent to Turing machines except a lot easier to program!
 - Turing machine definition is useful for breaking computation down into simplest steps
 - We only care about high level so we use programs

turing's big idea: machines as data

- Original Turing machine definition
 - A different “machine” M for each task
 - Each machine M is defined by a finite set of possible operations on finite set of symbols
 - M has a finite description as a sequence of symbols, its “code”
- You already are used to this idea:
 - We’ll write $<P>$ for the code of program P
 - i.e. $<P>$ is the program text as a sequence of ASCII symbols and P is what actually executes

turing’s idea: a universal turing machine

- A Turing machine interpreter U
 - On input $<P>$ and its input x, U outputs the same thing as P does on input x
 - At each step it decodes which operation P would have performed and simulates it.
- One Turing machine is enough
 - Basis for modern stored-program computer
 - Von Neumann studied Turing’s UTM design
halting problem

• Given: the code of a program P and an input x for P, i.e. given $(<P>,x)$
• Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem
“The halting problem is undecidable”

proof by contradiction

• Suppose that H is a Turing machine that solves the Halting problem

 Function $D(x)$:

  ```
  if $H(x,x)=1$ then
    while (true); /* loop forever */
  else
    no-op; /* do nothing and halt */
  endif
  ```

• What does D do on input $<D>$?
 – Does it halt?

proof by contradiction

• Does D halt on input $<D>$?

D halts on input $<D>$

$\iff H$ outputs 1 on input $(<D>,<D>)$

[since H solves the halting problem and so $H(<D>,x)$ outputs 1 iff D halts on input x]

$\iff D$ runs forever on input $<D>$

[since D goes into an infinite loop on x iff $H(x,x)=1$]

This is contradiction. Our only assumption was that H exists.

that’s it!

• We proved that there is no computer program that can solve the Halting Problem.

• This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.