Predicate logic, logical inference

Predicate or propositional function

A function that returns a truth value, e.g.,

- “x is a cat”
- “x is prime”
- “student x has taken course y”
- “x > y”
- “x + y = z” or \(\text{Sum}(x, y, z) \)

Predicates will have variables or constants as arguments.

Review: Quantifiers

- \(\forall x \ P(x) \)

 \(P(x) \) is true for every \(x \) in the domain

 read as “for all, \(P \) of \(x \)”

- \(\exists x \ P(x) \)

 There is an \(x \) in the domain for which \(P(x) \) is true

 read as “there exists \(x \), (such that) \(P \) of \(x \)”
review: statements with quantifiers

• ∃ x Even(x)

• ∀ x Odd(x)

• ∀ x (Even(x) ∨ Odd(x))

• ∃ x (Even(x) ∧ Odd(x))

• ∀ x Greater(x+1, x)

• ∃ x (Even(x) ∧ Prime(x))

Domain: Positive Integers

review: statements with quantifiers

• ∀ x ∃ y Greater(y, x)

• ∀ x ∃ y (Greater(y, x) ∧ Prime(y))

• ∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x))

• ∃ x ∃ y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y))

Domain: Positive Integers

review: statements with quantifiers

• “There is an odd prime”

• “If x is greater than two, x is not an even prime”

• ∀x∀y∀z ((Sum(x, y, z) ∧ Odd(x) ∧ Odd(y))→ Even(z))

• “There exists an odd integer that is the sum of two primes”

Domian: Positive Integers

review: English to predicate logic

“Red cats like tofu”

Domain: Integers

Cat(x) Red(x) LikesTofu(x)
Goldbach’s Conjecture

“Every even integer greater than two can be expressed as the sum of two primes”

Scope of Quantifiers

Example:

\[\text{Notlargest}(x) \equiv \exists y \text{ Greater}(y, x) \]
\[\equiv \exists z \text{ Greater}(z, x) \]

Truth Value:

- Doesn’t depend on \(y \) or \(z \) “bound variables”
- Does depend on \(x \) “free variable”

Quantifiers only act on free variables of the formula they quantify

\[\forall x (\exists y (P(x, y) \rightarrow \forall x Q(y, x))) \]

Nested Quantifiers

- **Bound variable names don’t matter**
 \[\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b) \]

- **Positions of quantifiers can sometimes change**
 \[\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y)) \]

- **But:** Order is important...
Predicate with two variables

\[P(x, y) \]

Quantification with two variables

<table>
<thead>
<tr>
<th>expression</th>
<th>when true</th>
<th>when false</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x \forall y P(x, y))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exists x \exists y P(x, y))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\forall x \exists y P(x, y))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exists y \forall x P(x, y))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Negations of quantifiers

- Not every positive integer is prime
- Some positive integer is not prime
- Prime numbers do not exist
- Every positive integer is not prime

De Morgan's laws for quantifiers

\[
\neg \forall x \ P(x) \equiv \exists x \ \neg P(x) \\
\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)
\]
De Morgan's laws for quantifiers

\[\neg \forall x \ P(x) \equiv \exists x \ \neg P(x) \]
\[\neg \exists x \ P(x) \equiv \forall x \ \neg P(x) \]

“There is no largest integer”
\[\neg \exists x \ \forall y \ (x \geq y) \]
\[\equiv \forall x \ \neg \forall y \ (x \geq y) \]
\[\equiv \forall x \ \exists y \ (y > x) \]

“For every integer there is a larger integer”

Logical Inference

- So far we’ve considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other

- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

- **Software Engineering**
 - Express desired properties of program as set of logical constraints
 - Use inference rules to show that program implies that those constraints are satisfied

- **Artificial Intelligence**
 - Automated reasoning

- **Algorithm design and analysis**
 - e.g., Correctness, Loop invariants.

- **Logic Programming, e.g. Prolog**
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set
an inference rule: *Modus Ponens*

- If \(p \) and \(p \rightarrow q \) are both true then \(q \) must be true

- Write this rule as \[
\frac{p, p \rightarrow q}{\therefore q}
\]

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.

- Therefore, by modus ponens:
 - You have a 311 class today.

proofs

Show that \(r \) follows from \(p, p \rightarrow q, \) and \(q \rightarrow r \)

1. \(p \) given
2. \(p \rightarrow q \) given
3. \(q \rightarrow r \) given
4. \(q \) modus ponens from 1 and 2
5. \(r \) modus ponens from 3 and 4

proofs can use equivalences too

Show that \(\neg p \) follows from \(p \rightarrow q \) and \(\neg q \)

1. \(p \rightarrow q \) given
2. \(\neg q \) given
3. \(\neg q \rightarrow \neg p \) contrapositive of 1
4. \(\neg p \) modus ponens from 2 and 3

inference rules

- Each inference rule is written as:
 \[
 \frac{A, B}{\therefore C,D}
 \]
 ...which means that if both \(A \) and \(B \) are true then you can infer \(C \) and you can infer \(D \).
 - For rule to be correct \((A \land B) \rightarrow C \) and \((A \land B) \rightarrow D \) must be a tautologies

- Sometimes rules don’t need anything to start with. These rules are called axioms:
 - e.g. *Excluded Middle Axiom*
 \[
 \therefore p \lor \neg p
 \]
simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

\[
\begin{align*}
\text{p \land q} & \quad \text{p, q} \\
\therefore p, q & \quad \therefore p \land q \\
\text{p \lor q, \neg p} & \quad \text{p} \\
\therefore q & \quad \therefore p \lor q, q \lor p \\
p, p \rightarrow q & \quad \text{p} \Rightarrow q \\
\therefore q & \quad \therefore p \rightarrow q
\end{align*}
\]

Direct Proof Rule

Not like other rules

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula.

- Inference rules only can be applied to whole formulas (not correct otherwise).

 e.g. 1. p \rightarrow q \quad \text{given}

 2. (p \lor r) \rightarrow q \quad \text{intro } \lor \text{ from 1.}

 Does not follow! e.g. p=F, q=F, r=T

direct proof of an implication

- p \Rightarrow q denotes a proof of q given p as an assumption

- The direct proof rule:

 If you have such a proof then you can conclude that p \rightarrow q is true

Example:

\begin{align*}
1. p & \quad \text{assumption} \\
2. p \lor q & \quad \text{intro for } \lor \text{ from 1} \\
3. p \rightarrow (p \lor q) & \quad \text{direct proof rule}
\end{align*}