Announcements

• Reading
 – 7th edition: p. 201 and 13.5
 – 6th edition: p. 177 and 12.5
 – 5th edition: p. 222 and 11.5
• Topic list and sample final exam problems have been posted
• Comprehensive final, roughly 67% of material post midterm
• Review session, Saturday, December 8, 10 am – noon, EEB 125
• Final exam, Monday, December 10
 – 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.

Last lecture highlights

• Cardinality
 • A set S is countable iff we can write it as $S=\{s_1, s_2, s_3, \ldots\}$ indexed by \mathbb{N}
 • Set of rationals is countable
 – “dovetailing”
 • Σ^* is countable
 – $\{0,1\}^* = \{0,1,00,10,11,000,001,010,011,100,101,\ldots\}$
 • Set of all (Java) programs is countable

Last lecture highlights

• The set of real numbers is not countable
 – “diagonalization”
 \[
 \begin{array}{cccccccccccc}
 0 & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
 r_1 & 0 & 1 & 4 & 2 & 5 & 8 & 5 & 7 & 1 & 4 & \ldots \\
 r_2 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & \ldots \\
 r_3 & 0 & 1 & 4 & 1 & 5 & 1 & 2 & 6 & 5 & \ldots \\
 r_4 & 0 & 1 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & \ldots \\
 r_5 & 0 & 2 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
 r_6 & 0 & 7 & 1 & 8 & 2 & 2 & 1 & 8 & 5 & \ldots \\
 r_7 & 0 & 6 & 1 & 8 & 0 & 3 & 3 & 3 & 9 & \ldots \\
 \end{array}
 \]
 – Why doesn’t this show that the rationals aren’t countable?

Do we care?

• Are any of these functions, ones that we would actually want to compute?
 – The argument does not even give any example of something that can’t be done, it just says that such an example exists
• We haven’t used much of anything about what computers (programs or people) can do
 – Once we figure that out, we’ll be able to show that some of these functions are really important
Turing Machines

Church-Turing Thesis
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

- Evidence
 - Intuitive justification
 - Huge numbers of equivalent models to TM’s based on radically different ideas

Components of Turing’s Intuitive Model of Computers

- Finite Control
 - Brain/CPU that has only a finite # of possible “states of mind”
- Recording medium
 - An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper
- Focus of attention
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time

What is a Turing Machine?

- Recording Medium
 - An infinite read/write “tape” marked off into cells
 - Each cell can store one symbol or be “blank”
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape - starts on input
- In each step, a Turing Machine
 - Reads the currently scanned symbol
 - Based on state of mind and scanned symbol
 - Overwrites symbol in scanned cell
 - Moves read/write head left or right one cell
 - Changes to a new state
- Each Turing Machine is specified by its finite set of rules

Sample Turing Machine

<table>
<thead>
<tr>
<th>s1</th>
<th>s2</th>
<th>s3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What is a Turing Machine?

- Components of Turing’s Intuitive Model of Computers
- Turing Machines
- Church-Turing Thesis
Turing Machine ≅ Ideal Java/C Program

- Ideal C/C++/Java programs
 - Just like the C/C++/Java you’re used to programming with, except you never run out of memory
 - constructor methods always succeed
 - malloc never fails
- Equivalent to Turing machines except a lot easier to program!
 - Turing machine definition is useful for breaking computation down into simplest steps
 - We only care about high level so we use programs

Turing’s idea: Machines as data

- Original Turing machine definition
 - A different “machine” M for each task
 - Each machine M is defined by a finite set of possible operations on finite set of symbols
 - M has a finite description as a sequence of symbols, its “code”
- You already are used to this idea:
 - We’ll write $<P>$ for the code of program P
 - i.e. $<P>$ is the program text as a sequence of ASCII symbols and P is what actually executes

Halting Problem

- Given: the code of a program P and an input x for P, i.e. given $(<P>,x)$
- Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem

“The halting problem is undecidable”

Proof by contradiction

- Suppose that H is a Turing machine that solves the Halting problem

 Function $D(x)$:
 - if $H(x,x)=1$ then
 - while (true); /* loop forever */
 - else
 - no-op; /* do nothing and halt */
 - endif

- What does D do on input $<D>$?
 - Does it halt?

Does D halt on input $<D>$?

D halts on input $<D>$

\Leftrightarrow H outputs 1 on input $(<D>,<D>)$

[since H solves the halting problem and so $H(<D>,x)$ outputs 1 iff D halts on input x]

\Leftrightarrow D runs forever on input $<D>$

[since D goes into an infinite loop on x iff $H(x,x)=1$]
That’s it!

- We proved that there is no computer program that can solve the Halting Problem.

- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.