CSE 311 Foundations of Computing I
Lecture 26
NFAs, Regular Expressions, and Equivalence with DFAs
Autumn 2012

Announcements
• Reading assignments
 — 7th Edition, Sections 13.3 and 13.4
 — 6th Edition, Section 12.3 and 12.4
 — 5th Edition, Section 11.3 and 11.4
• Problem 6 dropped from Homework 9
• Topic list and sample final exam problems have been posted
• Comprehensive final, roughly 67% of material post midterm
• Review session TBA (Saturday, December 8)
• Final exam, Monday, December 10
 — 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.
 — If you have a conflict, contact instructors ASAP

Last lecture highlights
Finite State Machines with output at states
State minimization

Nondeterministic Finite Automaton (NFA)
• Graph with start state, final states, edges labeled by symbols (like DFA) but
 — Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 — Also can have edges labeled by empty string λ
• Definition: The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states

Conversion of NFAs to a DFAs
• Proof Idea:
 — The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 — There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Three ways of thinking about NFAs
• Outside observer: Is there a path labeled by x from the start state to some final state?
• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Conversion of NFAs to a DFAs

• New start state for DFA
 – The set of all states reachable from the start state of the NFA using only edges labeled λ

Example: NFA to DFA

Conversion of NFAs to a DFAs

• Final states for the DFA
 – All states whose set contain some final state of the NFA

Conversion of NFAs to a DFAs

• For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
 – Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 • starting from some state in S, then
 • following one edge labeled by s, and
 • then following some number of edges labeled by λ
 – T will be \emptyset if no edges from S labeled s exist
Example: NFA to DFA

NFA

DFA

Example: NFA to DFA

NFA

DFA
Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - n-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary
 - Is the 10th char from the end a 1?

- The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

NFAs and Regular Expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Note: One can also find a regular expression to describe the language recognized by any NFA but we won’t prove that fact

Regular expressions over Σ

- Basis:
 - \emptyset, λ are regular expressions
 - a is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*

Basis

- Case \emptyset:

- Case λ:

- Case a:

Basis

- Case \emptyset:

- Case λ:

- Case a:
Inductive Hypothesis
• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B.

Inductive Step
• Case ($A \cup B$):

Inductive Step
• Case ($A B$):

Inductive Step
• Case A^*:
Inductive Step

• Case A^*

Build a NFA for $(01 \cup 1)^*0$

Solution

$(01 \cup 1)^*0$

Converting an NFA to a regular expression

• Consider the DFA for the mod 3 sum
 – Accept strings from $\{0,1,2\}^*$ where the digits mod 3 sum of the digits is 0

Splicing out a node

• Label edges with regular expressions

Finite Automaton without t_1

Final regular expression:
$(0 \mid 10^*2 \mid (2 \mid 10^*1))(0 \mid 20^*1)^*(1 \mid 20^*2)^*$