Announcements

• Reading assignments
 — 7th Edition, Section 5.3 and pp. 878-880
 — 6th Edition, Section 4.3 and pp. 817-819
 — 5th Edition, Section 3.4 and pp. 766
• Midterm statistics:
 — Min 40, Max 100, Median 80, Mean 78

Highlight from last lecture:
Recursive Definitions - General Form

• Recursive definition
 — Basis step: Some specific elements are in S
 — Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
 — Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Structural Induction: proving properties of recursively defined sets

How to prove $\forall x \in S. P(x)$ is true:
• Base Case: Show that P is true for all specific elements of S mentioned in the Basis step
• Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
• Inductive Step: Prove that P holds for each of the new elements constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis
• Conclude that $\forall x \in S. P(x)$

Structural Induction versus Ordinary Induction

• Ordinary induction is a special case of structural induction:
 — Recursive Definition of \mathbb{N}
 • Basis: $0 \in \mathbb{N}$
 • Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$
 — Structural induction follows from ordinary induction
 • Let $Q(n)$ be true iff for all $x \in S$ that take n recursive steps to be constructed, $P(x)$ is true.

Using Structural Induction

• Let S be given by
 — Basis: $6 \in S; 15 \in S$
 — Recursive: if $x, y \in S$, then $x + y \in S$
• Claim: Every element of S is divisible by 3

Strings

- An alphabet \(\Sigma \) is any finite set of characters.
- The set \(\Sigma^* \) of strings over the alphabet \(\Sigma \) is defined by
 - Basis: \(\lambda \in \Sigma^* \) (\(\lambda \) is the empty string)
 - Recursive: if \(w \in \Sigma^* \), \(x \in \Sigma \), then \(wx \in \Sigma^* \)

Structural Induction for strings

- Let \(S \) be a set of strings over \{a,b\} defined as follows
 - Basis: \(a \in S \)
 - Recursive:
 - If \(w \in S \) then \(aw \in S \) and \(bw \in S \)
 - If \(u \in S \) and \(v \in S \) then \(uv \in S \)
 - Claim: if \(w \in S \) then \(w \) has more a’s than b’s

Function definitions on recursively defined sets

\[
\begin{align*}
\text{len}(\lambda) &= 0; \\
\text{len}(wa) &= 1 + \text{len}(w); \text{for} \ w \in \Sigma^*, \ a \in \Sigma \\
\text{Reversal:} & \\
\lambda^R &= \lambda; \\
(wa)^R &= aw^R \text{for} \ w \in \Sigma^*, \ a \in \Sigma \\
\text{Concatenation:} & \\
x \cdot \lambda &= x \text{ for} \ x \in \Sigma^* \\
x \cdot wa &= (x \cdot w)a \text{ for} \ x, w \in \Sigma^*, a \in \Sigma
\end{align*}
\]

Rooted Binary trees

- Basis: \(\bullet \) is a rooted binary tree
- Recursive Step: If \(T_1 \) and \(T_2 \) are rooted binary trees then so is:

Functions defined on rooted binary trees

- \(\text{size}(\bullet) = 1 \)
- \(\text{size}(T_1 + T_2) = 1 + \text{size}(T_1) + \text{size}(T_2) \)
- \(\text{height}(\bullet) = 0 \)
- \(\text{height}(T_1 + T_2) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
For every rooted binary tree T
\[\text{size}(T) \leq 2^{\text{height}(T)+1} - 1 \]

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Legal variable names, keywords in Java/C/C++
 - Binary strings with an equal # of 0’s and 1’s (HW6)

Regular Expressions over Σ

- Each is a “pattern” that specifies a set of strings
- Basis:
 - \emptyset, λ are regular expressions
 - a is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*

Each regular expression is a “pattern”

- λ matches the empty string
- a matches the one character string a
- $(A \cup B)$ matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A^* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

- 0^*
- 0^*1^*
- $(0 \cup 1)^*$
- $(0^*1^*)^*$
- $(0 \cup 1)^*0110(0 \cup 1)^*$
- $(0 \cup 1)^*(0110 \cup 100)(0 \cup 1)^*$

Regular expressions in practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of hypertext scripting language PHP used for web programming
 - Also in text processing programming language Perl
Regular Expressions in PHP

- int `preg_match` (string $pattern, string $subject,...)
- $pattern syntax:
 - `[01]` a 0 or a 1 \^ start of string \$ end of string
 - `[0-9]` any single digit \. period \, comma \- minus
 - any single character
 - `ab` a followed by b (A\B)
 - `(a|b)` a or b (A\B)
 - `a*` zero or more of a A*
 - `a+` one or more of a AA*
 - e.g. `^\[\-\+\]\?[0-9]*\(\.|\,\)?[0-9]+$`
 General form of decimal number e.g. 9.12 or -9.8 (Europe)

More examples

- All binary strings that have an even # of 1’s

 - All binary strings that don’t contain 101

Regular expressions can’t specify everything we might want

- **Fact**: Not all sets of strings can be specified by regular expressions
 - One example is the set of binary strings with equal #’s of 0’s and 1’s from HW6