CSE 311 Foundations of Computing I

Lecture 16
Induction and Recursive Definitions
Autumn 2012

Announcements

• Reading assignments
 – Today:
 • 5.2, 5.3 7th Edition
 • 4.2, 4.3 6th Edition
 • 3.3, 3.4 5th Edition
• Midterm Friday, Nov 2
 – Closed book, closed notes
 – Practice midterm available on the Web
 – Cover class material up to and including induction.
• Extra office hours Thursday (midterm review)
 – 3:30 pm, Dan Suciu, Gowen 201
 – 4:30 pm, Richard Anderson, Gowen 201

Highlights from last lecture

• Mathematical Induction
 \[
 P(0) \quad \forall k \geq 0 (P(k) \rightarrow P(k+1)) \\
 \therefore \forall n \geq 0 \ P(n)
 \]
• Induction proof layout:
 1. By induction we will show that P(n) is true for every n \geq 0
 2. Base Case: Prove P(0)
 3. Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer k \geq 0
 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(k) is true
 5. Conclusion: Result follows by induction

Harmonic Numbers

\[
H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}
\]
Prove \(H_{2^n} \geq 1 + \frac{n}{2}\) for all \(n \geq 1\)

Cute Application: Checkerboard tiling with Trinominos

Prove that a \(2^n \times 2^n\) checkerboard with one square removed can be tiled with:

\[
\text{\begin{tabular}{|c|c|c|c|}
\hline
\hline
\hline
\end{tabular}}
\]

Strong Induction

\[
P(0) \\
\forall k ((P(0) \land P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k+1))
\]
\[
\therefore \forall n P(n)
\]
Follows from ordinary induction applied to
\[
Q(n) = P(0) \land P(1) \land P(2) \land \cdots \land P(n)
\]
Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis:
 Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k
4. Inductive Step:
 Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction

Every integer ≥ 2 is the product of primes

Recursive Definitions of Functions

- $F(0) = 0; F(n + 1) = F(n) + 1$
- $G(0) = 1; G(n + 1) = 2 \times G(n)$
- $0! = 1; (n+1)! = (n+1) \times n!$
- $H(0) = 1; H(n + 1) = 2^{H(n)}$

Fibonacci Numbers

- $f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$

Bounding the Fibonacci Numbers

- Theorem: $2^{n/2-1} \leq f_n < 2^n$ for $n \geq 2$

Fibonacci numbers and the running time of Euclid’s algorithm

- Theorem: Suppose that Euclid’s algorithm takes n steps for $\gcd(a,b)$ with $a > b$, then $a \geq f_{n+1}$

- Set $r_0 = a, r_n = b$ then Euclid’s alg. computes
 $r_{n+1} = q_n r_n + r_{n-1}$
 $r_n = q_{n+1} r_{n+1} + r_{n-2}$
 \vdots
 $r_3 = q_2 r_2 + r_1$
 $r_2 = q_1 r_1$

 each quotient $q_i \geq 1$
 $r_i \geq 1$
Recursive Definitions of Sets

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- The set Σ^* of strings over the alphabet Σ is defined
 - Basis: $\lambda \in S$ (λ is the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Recursive definitions of sets

Basis: $6 \in S; 15 \in S$
Recursive: if $x, y \in S$, then $x + y \in S$

Basis: $[1, 1, 0], [0, 1, 1] \in S$
Recursive:
 - if $[x, y, z] \in S$, $\alpha \in \mathbb{R}$, then $\begin{bmatrix} \alpha x, \alpha y, \alpha z \end{bmatrix} \in S$
 - if $[x_1, y_1, z_1], [x_2, y_2, z_2] \in S$, then $[x_1 + x_2, y_1 + y_2, z_1 + z_2]$

Powers of 3

Function definitions on recursively defined sets

Len(λ) = 0;
Len(wx) = 1 + Len(w); for $w \in \Sigma^*$, $x \in \Sigma$

Concat(w, λ) = w for $w \in \Sigma^*$
Concat(w_1, w_2, x) = Concat(w_1, w_2) x for $w_1, w_2 \in \Sigma^*$, $x \in \Sigma$