Announcements

- Reading assignments
 - Today:
 - 7th Edition: 4.3 (the rest of the chapter is interesting!)
 - 6th Edition: 3.5, 3.6
 - 5th Edition: 2.5, 2.6 up to p. 191
 - Wednesday:
 - 7th Edition: 5.1, 5.2
 - 6th Edition: 4.1, 4.2
 - 5th Edition: 3.3, 3.4

Fast modular exponentiation

Fast exponentiation algorithm

- Compute \(78365^{65336} \mod 104729\)
- Compute \(78365^{81453} \mod 104729\)

Fast exponentiation algorithm

- What if the exponent is not a power of two?

\[81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^0\]

The fast exponentiation algorithm computes \(a^n \mod m\) in time \(O(\log n)\)

Basic applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher
Hashing
- Map values from a large domain, 0...M-1 in a
 much smaller domain, 0...N-1
- Index lookup
- Test for equality
- Hash(x) = x mod p
- Often want the hash function to depend on all
 of the bits of the data
 - Collision management

Simple cipher
- Caesar cipher, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher
 - f(p) = (p + k) mod 26
 - f⁻¹(p) = (p - k) mod 26
- f(p) = (ap + b) mod 26

Pseudo random number generation
- Linear Congruential method
 \[x_{n+1} = (a \times x_n + c) \mod m \]

Primality
- An integer p greater than 1 is called prime if the
 only positive factors of p are 1 and p.
- A positive integer that is greater than 1 and is not
 prime is called composite.

Fundamental Theorem of Arithmetic
- Every positive integer greater than 1 has a
 unique prime factorization

Factorization
- If n is composite, it has a factor of size at most
 \(\sqrt{n} \)
Euclid’s theorem

There are an infinite number of primes.

Proof:
By contradiction
Suppose there are a finite number of primes: p_1, p_2, \ldots, p_n

Distribution of Primes

- If you pick a random number n in the range $[x, 2x]$, what is the chance that n is prime?

Famous Algorithmic Problems

- Primality Testing:
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factoring

- Factor the following 232 digit number [RSA768]:

Greatest Common Divisor

- GCD(a, b): Largest integer d such that $d \mid a$ and $d \mid b$
 - GCD(100, 125) =
 - GCD(17, 49) =
 - GCD(11, 66) =
 - GCD(180, 252) =
GCD, LCM and Factoring

\[a = 2^3 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 46,200 \]

\[b = 2^3 \cdot 3^2 \cdot 5^1 \cdot 7^1 = 204,750 \]

\[\text{GCD}(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(1,1)} \cdot 7^{\min(1,1)} \]

\[\text{LCM}(a, b) = 2^{\max(3,1)} \cdot 3^{\max(1,2)} \cdot 5^{\max(1,1)} \cdot 7^{\max(1,1)} \]

Theorem

Let \(a\) and \(b\) be positive integers. Then

\[a \cdot b = \text{gcd}(a, b) \cdot \text{lcm}(a, b) \]

Euclid’s Algorithm

- \(\text{GCD}(x, y) = \text{GCD}(y, x \mod y) \)

Example: \(\text{GCD}(660, 126) \)

\[
\begin{align*}
\text{int } & \text{GCD}(\text{int } a, \text{int } b) \{ \\
& / \ast a >= b, \ b > 0 \ast / \\
& \text{int } \text{tmp}; \\
& \text{int } x = a; \\
& \text{int } y = b; \\
& \text{while } (y > 0) \{ \\
& \quad \text{tmp} = x \% y; \\
& \quad x = y; \\
& \quad y = \text{tmp}; \\
& \} \\
& \text{return } x; \\
\}
\end{align*}
\]

Extended Euclid’s Algorithm

- If \(\text{GCD}(x, y) = g \), there exist integers \(s, t \), such \(sx + ty = g \);

- The values \(x, y \) in Euclid’s algorithm are linear sums of \(a, b \).
 - A little book keeping can be used to keep track of the constants

Bézout’s Theorem

If \(a \) and \(b \) are positive integers, then there exist integers \(s \) and \(t \) such that

\[\text{gcd}(a,b) = sa + tb. \]

Simple cipher

- Caesar cipher, \(a \to b, b \to c, \ldots \)
 - HELLOWORLD \(\to \) IFMMPXPSME

- Shift cipher
 - \(f(x) = (x + k) \mod 26 \)
 - \(f^{-1}(x) = (x - k) \mod 26 \)
 - \(f(x) = (ax + b) \mod 26 \)
 - How good is the cipher \(f(x) = (2x + 1) \mod 26 \)
Multiplicative Cipher: \(f(x) = ax \mod m \)

For a multiplicative cipher to be invertible:
\[
f(x) = ax \mod m : \{0, m-1\} \rightarrow \{0, m-1\}
\]
must be one to one and onto.

Lemma: If there is an integer \(b \) such that \(ab \mod m = 1 \), then the function \(f(x) = ax \mod m \) is one to one and onto.

Multiplicative Inverse mod \(m \)

Suppose \(\gcd(a, m) = 1 \)

By Bézout’s Theorem, there exist integers \(s \) and \(t \) such that \(sa + tm = 1 \).

\(s \) is the multiplicative inverse of \(a \):
\[
1 = (sa + tm) \mod m = sa \mod m
\]