Announcements

• Reading assignments
 — Wednesday:
 • 4.1-4.2 7th Edition
 • 3.4, 3.6 up to p. 227 6th Edition
 • 2.4, 2.5 up to p. 177 5th Edition
• Homework 4
 — Coming soon . . .

Set Theory

• Formal treatment dates from late 19th century
• Direct ties between set theory and logic
• Important foundational language

Definition: A set is an unordered collection of objects

\[x \in A : \quad \text{“} x \text{ is an element of } A \text{”} \]
\[x \notin A : \quad \neg (x \in A) \]

Definitions

• A and B are *equal* if they have the same elements

\[A = B \iff \forall x \ (x \in A \leftrightarrow x \in B) \]

• A is a *subset* of B if every element of A is also in B

\[A \subseteq B \iff \forall x \ (x \in A \rightarrow x \in B) \]

Empty Set and Power Set

• Empty set \(\emptyset \) does not contain any elements

• Power set of a set \(A \) = set of all subsets of \(A \)

\[\mathcal{P}(A) = \{ B : B \subseteq A \} \]
Cartesian Product: $A \times B$

$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$

Set operations

- $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$
- $A \cap B = \{ x \mid (x \in A) \land (x \in B) \}$
- $A - B = \{ x \mid (x \in A) \land (x \notin B) \}$
- $A \oplus B = \{ x \mid (x \in A) \oplus (x \in B) \}$
- $\overline{A} = \{ x \mid x \notin A \}$ (with respect to universe U)

De Morgan’s Laws

- $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof technique:

To show $C = D$, show

$\forall x \in C \rightarrow x \in D$ and

$\forall x \in D \rightarrow x \in C$

Distributive Laws

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Characteristic vectors:

Representing sets using bits

- Suppose universe U is $\{1,2,...,n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

 $b_1b_2...b_n$ where $b_i=1 \equiv (i \in B)$

 $b_i=0 \equiv (i \notin B)$

 – Called the characteristic vector of set B

- Given characteristic vectors for A and B

 – What is characteristic vector for $A \cup B$? $A \cap B$?
Boolean operations on bit-vectors: (a.k.a. bit-wise operations)

- 01101101 Java: \(z = x \oplus y \)
 \(\lor \) 00110111
 01111111

- 00101010 Java: \(z = x \land y \)
 \(\land \) 00001111
 00001010

- 01101101 Java: \(z = x \oplus y \)
 \(\oplus \) 00110111
 01011010

A simple identity

- If \(x \) and \(y \) are bits: \((x \oplus y) \oplus y = ? \)
- What if \(x \) and \(y \) are bit-vectors?

Private Key Cryptography

- Alice wants to be able to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation, cannot tell what Alice’s message is.
- Alice and Bob can get together and privately share a secret key \(K \) ahead of time.

One-time pad

- Alice and Bob privately share random \(n \)-bit vector \(K \) — Eve does not know \(K \)
- Later, Alice has \(n \)-bit message \(m \) to send to Bob
 — Alice computes \(C = m \oplus K \)
 — Alice sends \(C \) to Bob
 — Bob computes \(m = C \oplus K \) which is \((m \oplus K) \oplus K\)
- Eve cannot figure out \(m \) from \(C \) unless she can guess \(K \)

Unix/Linux file permissions

- \(ls -l \)
 - drwxr-xr-x ... Documents/
 - rw-r--r-- ... file1
- Permissions maintained as bit vectors
 — Letter means bit is 1 — means bit is 0.

Russell’s Paradox

\[S = \{ x \mid x \notin x \} \]
Functions review

• A function from A to B
 • an assignment of exactly one element of B
 to each element of A.
 • We write $f: A \rightarrow B$.
 • “Image of a” = $f(a)$
 • Domain of f: A
 • Range of f = set of all images of elements of A

Is this a function? one-to-one? onto?

Image, Preimage