2 More on sets.

Prove that \(A \subseteq B \iff \bar{B} \subseteq \bar{A} \).

Proof. (For a biconditional statement \(P \iff Q \), we must show both that \(P \rightarrow Q \) and \(Q \rightarrow P \) in order to complete the proof.)

(\(\rightarrow \)) Let \(A \subseteq B \), and suppose \(x \in \bar{B} \).
Then \(x \notin B \) by definition of set complements.
Since \(A \subseteq B \), then \(\forall y(y \in A \rightarrow y \in B) \) [contrapositive], so it follows that \(x \notin A \).
Therefore \(x \in \bar{A} \) by def. of set complements.
Since we have shown that \(x \in \bar{B} \rightarrow x \in \bar{A} \), then \(\bar{B} \subseteq \bar{A} \) by definition of subset.

(\(\leftarrow \)) Let \(\bar{B} \subseteq \bar{A} \), and suppose \(x \in A \). By a symmetrical argument, \(x \in B \). Thus \(A \subseteq B \). \(\square \)

3 Memories of functions.

For all functions and mappings below, state whether they are injective (one-to-one), surjective (onto), or bijective (both) over the following sets:

\[
\begin{align*}
A &= \{ x | x \in \mathbb{R}, x \geq 1 \} \\
B &= \{ x | x \in \mathbb{R}, 0 \leq x \leq 1 \} \\
C &= \{ x | x \in \mathbb{R}, -1 \leq x \leq 1 \}
\end{align*}
\]

1. \(f: A \rightarrow B \), \(f(x) = \frac{1}{x} \)
 Answer: Injective, but not surjective (\(0 \in B \), but \(\frac{1}{x} \neq 0 \) \(\forall x \in A \).)

2. \(f: B \rightarrow C \), \(f(x) = x^2 \)
 Answer: Injective, but not surjective (\(-1 \in C \), but \(x^2 \neq -1 \) \(\forall x \in B \).)

3. \(f: B \rightarrow B \), \(f(x) = x^2 \)
 Answer: Both one-to-one and onto, so bijective. (No negatives to worry about in this case, so we don’t have the same problem as 2 for surjective or the same problem as 4 for injective.)

4. \(f: C \rightarrow B \), \(f(x) = x^2 \)
 Answer: Surjective, but not injective. (\(f(-1) = f(1) = 1 \), but \(-1 \neq 1 \))
4 Modular Arithmetic.

Find $a \in \mathbb{Z}$ such that:

1. $a \equiv 43 \pmod{23}, \ -22 \leq a \leq 0$
 \[\text{Answer: } a = -3 \text{ (we can check by seeing that } 23|(43 - (-3))\]

2. $a \equiv 17 \pmod{29}, \ -14 \leq a \leq 14$
 \[\text{Answer: } a = -12 \text{ (we can check by seeing that } 29|(17 - (-12))\]

3. $a \equiv -11 \pmod{21}, \ 90 \leq a \leq 110$
 \[\text{Answer: } a = 94 \text{ (we can check by seeing that } 21|(94 - (-11))\]