
1R. Rao, CSE 311

On the menu today…

 jFLAP demo

 Regular expressions

 Pumping lemma

 Turing Machines

 Sections 12.4 and 12.5 in the text

2R. Rao, CSE 311

jFLAP Demo

 jFLAP: Useful tool for creating and testing abstract

machines
 Finite automata, Turing machines

 Use in homework 5 (optional) and homework 6

 Download from class website

3R. Rao, CSE 311

Regular Expressions

 Definition of a Regular Expression

 R is a regular expression iff

R is a string over V  { , , (,), , * } and R is:

1. Some symbol a  V, or

2. , or

3. , or

4. (R1  R2) where R1 and R2 are regular exps., or

5. R1R2 = R1R2 where R1 and R2 are reg. exps., or

6. R1* where R1 is a regular expression.

 Precedence: Evaluate * first, then o, then 
 E.g. 0  11* = 0  (1 (1*)) = {0}  {1, 11, 111, …}

4R. Rao, CSE 311

Regular languages (regular sets)

 A language is regular if it can be represented by a regular

expression.

 Examples:

L(R) = {w | w contains exactly two 0’s}

R = 1*01*01*

L(R) = {w | w contains an even number of 0’s}

R = (1*01*01*)*

L(R) = {w | w is a valid identifier in C}

R =

((A…Z)(a…z) _)((A…Z)(a…z)(0…9)_)*

1*

5R. Rao, CSE 311

L(R) = {w | w is a word in an Eminem song}

Ain’t I regular?

6R. Rao, CSE 311

Regular Expressions and Finite Automata

 Kleene’s theorem: A set is regular if and only if it is

recognized by a finite state automaton.

 Proof: See Theorem 1 in Section 12.4 for proof.
() Construct an NFA for each possible case in the definition: R =

a, or R = , or R = , or R = (R1  R2), or R = R1R2, or R =

R1*.

() Main Idea:

s1 s2
b

a

s1 s2
a  b

b

s1 s3 s2
a c

s1 2
a b*c

7R. Rao, CSE 311

A set is regular

 it can be expressed using a regular expression

 it can be recognized by a DFA

 it can be recognized by an NFA

8R. Rao, CSE 311

Some Applications of Regular Languages

 Pattern matching and searching:

 E.g. In Unix:
 ls *.c

 cp /myfriends/games/*.* /mydir/

 grep ’Spock’ *trek.txt

 Compilers:
 id ::= letter (letter | digit)*

 int ::= digit digit*

 float ::= d d*.d*( | E d d*)

 The symbol | stands for “or” (= union)

9R. Rao, CSE 311

Are there languages that are not regular?

 Is L = {0n1n | n  0} regular?

 Can you memorize the number of 0’s encountered so far with

a finite number of states?

 How do we prove L is not regular?

10R. Rao, CSE 311

Beyond the Regular world…

 How do we prove a language is not regular?

 Idea: If a language violates a property obeyed by all

regular languages, it cannot be regular!
 Pumping Lemma for showing non-regularity of languages

 See Example 6 in Sec. 12.4

I love ze pumping

lemma!

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

11R. Rao, CSE 311

The Pumping Lemma for Regular Languages

 What is it?

 A statement (“lemma”) that is true for all regular

languages

 Why is it useful?

 Can be used to show that certain languages are not

regular

 How? By contradiction: Assume the given language is

regular and show that it does not satisfy the pumping

lemma

*

12R. Rao, CSE 311

More about the Pumping Lemma

 What is the idea behind it?

Any regular language L has a DFA M that recognizes it

Suppose M has p states and accepts a string w of length  p.

 p transitions, p+1 states, i.e., a state must repeat within the

first p symbols due to the pigeonhole principle

 The sequence of states M goes through must contain a

non-empty cycle within the first p symbols

*

s0 s5 s9 s5 s7s3

w1 w2 wp-1 wp wp+1

States 1 2 3 p-1 p p+1

13R. Rao, CSE 311

More about the Pumping Lemma

 M goes through a non-empty cycle within the

first p symbols

 Therefore, all strings that make M go through this

cycle 0 or any number of times are also accepted

by M and should be in L.

*

s0 s5

s2 s9

s7s3

w1 w2

wp-1

wp
wp+1

wp-2

14R. Rao, CSE 311

Pumping Lemma

 Let L be a regular language and let p = “pumping length” =

no. of states of a DFA accepting L

 Then, any string w in L of length  p can be expressed as w

= xyz where:

 y is not empty (y is the cycle)

 |xy|  p (cycle occurs within p state transitions), and

 any “pumped” string xyiz is also in L for all i  0 (go

through the cycle 0 or more times)

More details in Example 6 in Sec. 12.4 in text

15R. Rao, CSE 311

Using The Pumping Lemma

 L = {0n1n | n  0} is not regular

 Proof by contradiction:

1. Assume L is regular and let p be the pumping length

given by the pumping lemma.

2. Consider w = 0p1p which is in L and has length  p.

3. Since w = xyz and |xy|  p and y is not empty, y = 0k for

some k > 0.

4. Then, xy2z = 0p-k 02k1p = 0p0k1p which is not in L.

This contradicts the pumping lemma. Therefore, L is not

regular.

16R. Rao, CSE 311

Just understand the basic idea and go

over Example 6 in Section 12.4 in

the text

Good news! Pumping lemma

won’t be in homeworks and

final exam.

17R. Rao, CSE 311

I’ll be back with da

pumpin’ lemma.

18R. Rao, CSE 311

If {0n1n | n  0} is not Regular, what is it?

Irregular??

Enter…Turing Machines

19R. Rao, CSE 311

Turing Machines

Just like a DFA except with:
 Infinite “tape” memory (or scratchpad) on which you receive your

input and on which you can do your calculations

 You can read one symbol at a time from a cell on the tape, write one

symbol, then move the read/write pointer or head left (L) or right (R)

Blank part of tape Blank part of tape

s0

s1

s2

s3

20R. Rao, CSE 311

Who was Turing?

 Alan Turing (1912-1954): one of the
most brilliant mathematicians of the
20th century (one of the “founding
fathers” of computing)

 Click on “Theory Hall of Fame” link
on class web under “Lectures”

 Introduced the Turing machine as a
formal model of what it means to
compute and solve a problem (i.e. an
“algorithm”)
 Paper: On computable numbers,

with an application to the

Entscheidungsproblem, Proc.

London Math. Soc. 42 (1936).

21R. Rao, CSE 311

How do Turing Machines compute?

 f(current state, symbol under the head) = (next state, symbol

to write over current symbol, direction of head movement)

 5-tuple representation: (s1, 1, s2, 0, L) (R = right, L = left)

 Turing machine “program” = set of such 5-tuples

s0

s1

s2

s3

s0

s1

s2

s3

22R. Rao, CSE 311

Turing Machine (TM) Definition

 TM T = (S, V, I, f, s0, F)
 NOTE: We will use F and V in our definition of TMs; the textbook

does not. Using V makes the input alphabet clear and distinct from

tape alphabet I. Using F makes the final/accepting states clear.

 S, s0, F are as in DFA definition

 Input strings are over an alphabet V  I.
 TM can use other symbols in I as markers, etc. for computing.

 Blank symbol is always in I (and not in V).

 f maps (state1, symbol1) to (state2, symbol2, direction)
 f need not be defined for every (state,symbol) input

 f is a “partial function”

 If f not defined for a particular (state,symbol), TM halts.

23R. Rao, CSE 311

Turing Machine (TM) Details

 Input string to TM given on tape
 TM always starts on leftmost nonblank symbol

 If no input, then can start on any cell of the tape

 TM can halt in two types of states:
 TM halts and accepts the input iff it enters a final state in F

 TM halts and rejects the input when it halts in any other state (when f is

not defined for a (state, symbol) pair)

 TM recognizes a string w iff it halts in a final state for w
 TM can reject w by halting in any non-final state or by looping

forever!

24R. Rao, CSE 311

Next Class:

Unsolvable problems…

