

- $L = \{0^n 1^n | n \ge 0\}$ is not regular
- Proof by contradiction:
 - 1. Assume L is regular and let p be the pumping length given by the pumping lemma.
 - 2. Consider $w = 0^{p}1^{p}$ which is in L and has length $\geq p$.
 - 3. Since w = xyz and $|xy| \le p$ and y is not empty, $y = 0^k$ for some k > 0.
 - 4. Then, $xy^2z = 0^{p-k} 0^{2k}1^p = 0^p 0^k 1^p$ which is not in L.

This contradicts the pumping lemma. Therefore, L is not regular.

15

R. Rao, CSE 311

