On the menu today...

+ JFLAP demo

+ Regular expressions

+ Pumping lemma

+ Turing Machines

+ Sections 12.4 and 12.5 in the text

R. Rao, CSE 311

JFLAP Demo

+ JFLAP: Useful tool for creating and testing abstract

machines
< Finite automata, Turing machines

+ Use in homework 5 (optional) and homework 6

4+ Download from class website

R. Rao, CSE 311

Regular Expressions

+ Definition of a Regular Expression
< R isaregular expression iff

Risastringover VU { A, I, (,), v, *}and Ris:

1. Some symbol a € V, or
A, or
@, or
(R; U R,) where R; and R, are regular exps., or
R;R, = R;°R, where R; and R, are reg. exps., or
R,* where R, is a regular expression.

SIGRENEREN

4+ Precedence: Evaluate * first, then °, then U
“ Eg.0ull*=0u (1°(1*)={0}u {1, 11, 111, ...}

R. Rao, CSE 311 3

Regular languages (regular sets)

+ A language is regular if it can be represented by a regular
expression.

+ Examples:
L(R) = {w | w contains exactly two 0’s}
R =1*01*01*
L(R) = {w | w contains an even number of 0’s}
R = (1*01*01*)* 1*
L(R) = {w | w is a valid identifier in C}
R =
((Au...Z)u(au...z2)u _)((Av...Z)yu(au...z)u(0u...9)u_)*

R. Rao, CSE 311 4

L(R) = {w | wis aword in an Eminem song}

Ain’t | regular?

|
[}

!

i
§ 7
A

=
AR

R. Rao, CSE 311

Regular Expressions and Finite Automata

4+ Kleene’s theorem: A set is regular if and only if it is
recognized by a finite state automaton.

+ Proof: See Theorem 1 in Section 12.4 for proof.
(—) Construct an NFA for each possible case in the definition: R =

a,orR=A0orR=,orR=(R1UR2),orR=R1°R2,0rR =
R1*,

(<) Main Idea:

@, @ — @@
b

R. Rao, CSE 311 @ : % - @ > @ abe @ 6

A set is regular

& it can be expressed using a regular expression
< it can be recognized by a DFA

< it can be recognized by an NFA

R. Rao, CSE 311 7

Some Applications of Regular Languages

<+

Pattern matching and searching:

< E.g. In Unix:
» 1s *.c
» cp /myfriends/games/*.* /mydir/
» grep ’Spock’ *trek.txt

Compilers:

@ id ::= letter (letter | digit)™*
© int ::= digit digit*

@ float ::= d d*.d* (A|E d d*)

< The symbol | stands for “or” (= union)

R. Rao, CSE 311 8

Are there languages that are not regular?

4+ IsL={0"1"| n> 0} regular?

4+ Can you memorize the number of 0’s encountered so far with
a finite number of states?

+ How do we prove L is not regular?

R. Rao, CSE 311 9

Beyond the Regular world...

+ How do we prove a language is not regular?

+ ldea: If a language violates a property obeyed by all

regular languages, it cannot be regular!
< Pumping Lemma for showing non-regularity of languages
< See Example 6 in Sec. 12.4

I love ze pumping
lemma!

R. Rao, CSE 311 10

AR 5
http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

The Pumping Lemma for Regular Languages k

o
+ Whatis it? N
< A statement (“lemma”) that is true for all regular
languages

+ Why is it useful?
< Can be used to show that certain languages are not
regular
< How? By contradiction: Assume the given language is
regular and show that it does not satisfy the pumping
lemma

R. Rao, CSE 311 11

® 20
. Seg O
More about the Pumping Lemma
+ What is the idea behind it? AN

Any regular language L has a DFA M that recognizes it
Suppose M has p states and accepts a string w of length > p.

2 3 p-1 p p+

States 1 1

< p transitions, p+1 states, i.e., a state must repeat within the
first p symbols due to the pigeonhole principle

< The sequence of states M goes through must contain a
non-empty cycle within the first p symbols

More about the Pumping Lemma k

< M goes through a non-empty cycle within the
first p symbols

< Therefore, all strings that make M go through this
cycle 0 or any number of times are also accepted
by M and should be in L.

13

Pumping Lemma

+ Let L be a regular language and let p = “pumping length” =
no. of states of a DFA accepting L

+ Then, any string w in L of length > p can be expressed as w
= Xyz where:
< yisnot empty (y is the cycle)
< |xy| < p (cycle occurs within p state transitions), and
< any “pumped” string Xy'z is also in L for all i > 0 (go
through the cycle 0 or more times)

More details in Example 6 in Sec. 12.4 in text

R. Rao, CSE 311 14

Using The Pumping Lemma

+ L={0"1"|n>0}is not regular

+ Proof by contradiction:

1. Assume L is regular and let p be the pumping length
given by the pumping lemma.

2. Consider w = OP1P which is in L and has length > p.

3. Since w = xyz and |xy| < p and y is not empty, y = Ok for
some k > 0.

4. Then, xy?z = 0p-k 02k1P = QPQK1P which is not in L.

This contradicts the pumping lemma. Therefore, L is not
regular.

R. Rao, CSE 311 15

Good news! Pumping lemma
won’t be in homeworks and
final exam.

Just understand the basic idea and go
over Example 6 in Section 12.4 in
the text

R. Rao, CSE 311 16

I’1l be back with da
pumpin’ lemma.

R. Rao, CSE 311 17

If {O"1" | n > 0} is not Regular, what is it?

\
s |
,(’~ Irregular??
, - J

-

Enter...Turing Machines

R. Rao, CSE 311 18

Turing Machines

Infinite Tape

Blank'partoffape[T 1o 1 [o[Blank part of tape
Machine State
Read/
% Head
S G>sp —
S2

Just like a DFA except with:
< Infinite “tape” memory (or scratchpad) on which you receive your
input and on which you can do your calculations
< You can read one symbol at a time from a cell on the tape, write one
symbol, then move the read/write pointer or head left (L) or right (R)

R. Rao, CSE 311 19

Who was Turing?

+ Alan Turing (1912-1954): one of the
most brilliant mathematicians of the
20™ century (one of the “founding
fathers” of computing)

4+ Click on “Theory Hall of Fame” link
on class web under “Lectures”

+ Introduced the Turing machine as a
formal model of what it means to
compute and solve a problem (i.e. an
“algorithm”)

< Paper:On computable numbers,
with an application to the
Entscheidungsproblem, Proc.

London Math. Soc. 42 (1930).
R. Rao, CSE 311 20

How do Turing Machines compute?

+ f(current state, symbol under the head) = (next state, symbol
to write over current symbol, direction of head movement)

|

Infinite Tape Infinite Tape
[alilol1lo] 1l1lololo
)
Machine State Machine State

[Read/ [Read/
‘ SO Write ‘ SO Write
Head Head

J —l &) Sl

33 (9_) Sl 33 \t
L Sy J ‘ S2 J

+ 5-tuple representation: (s;, 1,s,,0,L) (R =right, L = left)

4+ Turing machine “program” = set of such 5-tuples

R. Rao, CSE 311

21

Turing Machine (TM) Definition

+ TMT=(S,V, | f, Sos F)
< NOTE: We will use F and V in our definition of TMs; the textbook

does not. Using V makes the input alphabet clear and distinct from
tape alphabet I. Using F makes the final/accepting states clear.

+ S, sy, F are as in DFA definition

4+ Input strings are over an alphabet V c I.
< TM can use other symbols in | as markers, etc. for computing.

< Blank symbol 7 is always in | (and not in V).

+ fmaps (statel, symboll) to (state2, symbol2, direction)
< fneed not be defined for every (state,symbol) input
» fis a “partial function”
< If f not defined for a particular (state,symbol), TM halts.

R. Rao, CSE 311

Turing Machine (TM) Details

+ Input string to TM given on tape
< TM always starts on leftmost nonblank symbol
< If no input, then can start on any cell of the tape

+ TM can halt in two types of states:
< TM halts and accepts the input iff it enters a final state in F
< TM halts and rejects the input when it halts in any other state (when f is
not defined for a (state, symbol) pair)

+ TM recognizes a string w iff it halts in a final state for w

< TM can reject w by halting in any non-final state or by looping
forever!

R. Rao, CSE 311 23

Next Class:
Unsolvable problems...

R. Rao, CSE 311 24

