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On the menu today…

 jFLAP demo

 Regular expressions

 Pumping lemma

 Turing Machines

 Sections 12.4 and 12.5 in the text

2R. Rao, CSE 311

jFLAP Demo

 jFLAP: Useful tool for creating and testing abstract 

machines
 Finite automata, Turing machines

 Use in homework 5 (optional) and homework 6

 Download from class website



3R. Rao, CSE 311

Regular Expressions

 Definition of a Regular Expression

 R is a regular expression iff

R is a string over V  { , , (, ), , * } and R is:

1. Some symbol a  V,  or

2. ,  or

3. ,  or

4. (R1  R2)  where R1 and R2 are regular exps., or

5. R1R2 = R1R2 where R1 and R2 are reg. exps., or

6. R1*  where R1 is a regular expression.

 Precedence: Evaluate * first, then o, then 
 E.g. 0  11* = 0  (1 (1*)) = {0}  {1, 11, 111, …}
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Regular languages (regular sets)

 A language is regular if it can be represented by a regular 

expression.

 Examples:

L(R) = {w | w contains exactly two 0’s}

R = 1*01*01*

L(R) = {w | w contains an even number of 0’s}

R = (1*01*01*)*

L(R) = {w | w is a valid identifier in C}

R = 

((A…Z)(a…z) _ )((A…Z)(a…z)(0…9)_ )*

1*
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L(R) = {w | w is a word in an Eminem song}

Ain’t I regular?
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Regular Expressions and Finite Automata

 Kleene’s theorem: A set is regular if and only if it is 

recognized by a finite state automaton.

 Proof: See Theorem 1 in Section 12.4 for proof.
() Construct an NFA for each possible case in the definition: R = 

a, or R = , or R = , or R = (R1  R2), or R = R1R2, or R = 

R1*.

() Main Idea:

s1 s2
b

a

s1 s2
a  b

b

s1 s3 s2
a c

s1 2
a b*c
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A set is regular 

 it can be expressed using a regular expression 

 it can be recognized by a DFA 

 it can be recognized by an NFA
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Some Applications of Regular Languages

 Pattern matching and searching:

 E.g. In Unix:
 ls *.c

 cp /myfriends/games/*.* /mydir/

 grep ’Spock’ *trek.txt

 Compilers: 
 id ::= letter (letter | digit)*

 int ::= digit digit*

 float ::= d d*.d*( | E d d*)

 The symbol | stands for “or” (= union)
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Are there languages that are not regular? 

 Is L = {0n1n | n  0} regular?

 Can you memorize the number of 0’s encountered so far with 

a finite number of states?

 How do we prove L is not regular?
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Beyond the Regular world…

 How do we prove a language is not regular?

 Idea: If a language violates a property obeyed by all 

regular languages, it cannot be regular!
 Pumping Lemma for showing non-regularity of languages

 See Example 6  in Sec. 12.4

I love ze pumping 

lemma!

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm
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The Pumping Lemma for Regular Languages

 What is it?

 A statement (“lemma”) that is true for all regular 

languages

 Why is it useful?

 Can be used to show that certain languages are not 

regular

 How? By contradiction: Assume the given language is 

regular and show that it does not satisfy the pumping 

lemma

*
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More about the Pumping Lemma

 What is the idea behind it?

Any regular language L has a DFA M that recognizes it

Suppose M has p states and accepts a string w of length  p.

 p transitions, p+1 states, i.e., a state must repeat within the 

first p symbols due to the pigeonhole principle 

 The sequence of states M goes through must contain a 

non-empty cycle within the first p symbols

*

s0 s5 s9 s5 s7s3

w1 w2 wp-1 wp wp+1

States   1 2 3 p-1 p            p+1  
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More about the Pumping Lemma

 M goes through a non-empty cycle within the 

first p symbols

 Therefore, all strings that make M go through this 

cycle 0 or any number of times are also accepted 

by M and should be in L. 

*

s0 s5

s2 s9

s7s3

w1 w2

wp-1

wp
wp+1

wp-2
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Pumping Lemma

 Let L be a regular language and let p = “pumping length” = 

no. of states of a DFA accepting L

 Then, any string w in L of length  p can be expressed as w

= xyz where:

 y is not empty (y is the cycle)

 |xy|  p (cycle occurs within p state transitions), and 

 any “pumped” string xyiz is also in L for all i  0 (go 

through the cycle 0 or more times)

More details in Example 6 in Sec. 12.4 in text
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Using The Pumping Lemma

 L = {0n1n | n  0} is not regular 

 Proof by contradiction:

1. Assume L is regular and let p be the pumping length 

given by the pumping lemma. 

2. Consider w = 0p1p which is in L and has length  p. 

3. Since w = xyz and |xy|  p and y is not empty, y = 0k for 

some k > 0.

4. Then, xy2z = 0p-k 02k1p = 0p0k1p which is not in L. 

This contradicts the pumping lemma. Therefore, L is not 

regular.
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Just understand the basic idea and go 

over Example 6 in Section 12.4 in 

the text

Good news! Pumping lemma 

won’t be in homeworks and 

final exam.
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I’ll be back with da

pumpin’ lemma.
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If {0n1n | n  0} is not Regular, what is it?

Irregular??

Enter…Turing Machines
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Turing Machines

Just like a DFA except with:
 Infinite “tape” memory (or scratchpad) on which you receive your 

input and on which you can do your calculations

 You can read one symbol at a time from a cell on the tape, write one 

symbol, then move the read/write pointer or head left (L) or right (R)

Blank part of tape Blank part of tape

s0

s1

s2

s3
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Who was Turing?

 Alan Turing (1912-1954): one of the 
most brilliant mathematicians of the 
20th century (one of the “founding 
fathers” of computing)

 Click on “Theory Hall of Fame” link 
on class web under “Lectures”

 Introduced the Turing machine as a 
formal model of what it means to 
compute and solve a problem (i.e. an 
“algorithm”)
 Paper: On computable numbers, 

with an application to the 

Entscheidungsproblem, Proc. 

London Math. Soc. 42 (1936).
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How do Turing Machines compute?

 f(current state, symbol under the head) = (next state, symbol 

to write over current symbol, direction of head movement)

 5-tuple representation: (s1, 1, s2, 0, L) (R = right, L = left)

 Turing machine “program” = set of such 5-tuples

s0

s1

s2

s3

s0

s1

s2

s3
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Turing Machine (TM) Definition

 TM T = (S, V, I, f, s0, F) 
 NOTE: We will use F and V in our definition of TMs; the textbook 

does not. Using V makes the input alphabet clear and distinct from 

tape alphabet I. Using F makes the final/accepting states clear. 

 S, s0, F are as in DFA definition

 Input strings are over an alphabet V  I.
 TM can use other symbols in I as markers, etc. for computing.

 Blank symbol is always in I (and not in V).

 f maps (state1, symbol1) to (state2, symbol2, direction)
 f need not be defined for every (state,symbol) input 

 f is a “partial function”

 If f not defined for a particular (state,symbol), TM halts.
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Turing Machine (TM) Details

 Input string to TM given on tape
 TM always starts on leftmost nonblank symbol 

 If no input, then can start on any cell of the tape

 TM can halt in two types of states:
 TM halts and accepts the input iff it enters a final state in F

 TM halts and rejects the input when it halts in any other state (when f is 

not defined for a (state, symbol) pair)

 TM recognizes a string w iff it halts in a final state for w
 TM can reject w by halting in any non-final state or by looping 

forever!
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Next Class:  

Unsolvable problems…


