What’s on today’s menu?

- Wrap up of Proof Techniques
- Review of Chapter 1
- Introduction to Sets

Existence Proofs

- Goal: Prove $\exists x \, P(x)$
- Two ways:
 - 1st way: Constructive proof
 - 2nd way: Destructive proof
 - 2nd way: Non-constructive proof
Constructive Existence Proof

Goal: Prove $\exists x \ P(x)$

Constructive proof method: Construct an a such that $P(a)$ is true.

Example: Prove that there exist nonzero integers x, y, z such that $x^2 + y^2 = z^2$.

Proof: Let $x = 3, \ y = 4, \ z = 5$. (Actually, infinitely many solutions)

Homework: Prove this for $x^n + y^n = z^n$ for all integers $n > 2$.

Scratch that. This is Fermat’s last theorem: Took 358 years to prove! See > 100-pages proof by Wiles (1995).

Non-Constructive Existence Proof

Goal: Prove $\exists x \ P(x)$

Non-constructive proof method: Prove indirectly, e.g., via a contradiction.

Example: A real no. r is rational iff \exists integers p,q s.t. $r = p/q$. A real no. is irrational iff it is not rational. Prove that \exists irrational x,y s.t. x^y is rational.

Pf. We know $\sqrt{2}$ is irrational (see text). Consider $\sqrt[2]{\sqrt{2}}$.

Two possibilities: (a) $\sqrt[2]{\sqrt{2}}$ is rational. Then, choose $x = y = \sqrt{2}$.

(b) $\sqrt[2]{\sqrt{2}}$ is irrational. Choose $x = \sqrt[2]{\sqrt{2}}$ and $y = \sqrt{2}$. Then, $x^y = 2$ is rational. Either way, we have shown $\exists x,y$ s.t. x^y is rational.

(Doesn’t say which is true!)
Review of Chapter 1

✦ Propositional Logic
 ➤ Propositions, logical operators →, ∧, ∨, ⊕, →, ↔, truth tables for operators, precedence of logical operators
 ➤ Compound propositions, truth tables for compound propositions
 ➤ Converse, contrapositive, and inverse of p → q
 ➤ Converting from/to English and propositional logic

✦ Propositional Equivalences
 ➤ Tautology versus contradiction
 ➤ Logical equivalence p ≡ q
 ➤ Tables of logical equivalences (tables 6, 7, 8 in text)
 ➤ De Morgan’s laws
 ➤ Showing two compound propositions are logically equivalent via (a) truth table method and (b) via equivalences in tables 6, 7, 8.

Predicate Logic

✦ Predicates and Quantifiers
 ➤ Predicates, variables, and domain of each variable
 ➤ Universal and existential quantifiers ∀ and ∃ (uniqueness ∃!)
 ➤ Truth value of a quantifier statement
 ➤ Restricting domain of a quantifier, precedence over other operators, and binding variable to a quantifier
 ➤ Logical equivalence of two quantified statements
 ➤ Negation and De Morgan’s laws for quantifiers
 ➤ Translating to/from English

✦ Nested Quantifiers
 ➤ Quantifiers as loops
 ➤ Order of quantifiers matters!
 ➤ Translating to/from English, negating nested quantifiers
Rules of Inference

- Argument, Premises, Conclusion, Argument form
 - Valid argument and valid argument form (show it is a tautology).

- Rule of inference = valid argument form. Table 1 (p. 66).
 - Modus ponens: \([p \land (p \rightarrow q)] \rightarrow q\)
 - Modus tollens: \([((p \rightarrow q) \land \neg q) \rightarrow \neg p]\)
 - Hypothetical Syllogism: \([((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)]\)
 - Disjunctive Syllogism: \([((p \lor q) \land \neg p) \rightarrow q]\)
 - Addition, Simplification, Conjunction
 - Resolution: \([((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)]\)

- Using rules of inference to prove statements from premises

- Rules of inference for quantified statements: instantiation and generalization

Proofs and Proof Methods

- Direct proof of \(p \rightarrow q\): Assume \(p\) is true; show \(q\) is true.
 - Example in class: If \(n\) is an even integer, then \(n^2\) is even.

- Proof of \(p \rightarrow q\) by contraposition: Assume \(\neg q\) and show \(\neg p\).
 - Example in class: If \(n^2\) is even for integer \(n\), then \(n\) is even.

- Vacuous and Trivial Proofs of \(p \rightarrow q\)

- Proof by contradiction of a statement \(p\): Assume \(p\) is not true and show this leads to a contradiction \((r \land \neg r)\).
 - Example in class: Pigeonhole principle

- Proofs of equivalence for \(p \leftrightarrow q\): Show \(p \rightarrow q\) and \(q \rightarrow p\)

- Proof by cases and Existence proofs
Enuff review, let’s move on to sets!!