1. **Logic, proofs, sets and functions.** (25 points; 5+10+10)

 (a) **Prove or disprove:** \(\exists x \in \mathbb{R}^+, \forall y \in \mathbb{R} (y \geq x \rightarrow y^2 \geq 2y)\).

 (b) Let \(P(S)\) denote the power set of \(S\); i.e. \(P(S) = \{T : T \subseteq S\}\). Prove that \(A \subseteq B\) if and only if \(P(A) \subseteq P(B)\).

 (c) Let \(S\) and \(T\) be subsets of a universal set \(U\), and define \(A_{0,0} = S \cap T\), \(A_{0,1} = S \cap \tilde{T}\), \(A_{1,0} = \tilde{S} \cap T\) and \(A_{1,1} = \tilde{S} \cap \tilde{T}\). Express \(S \cup T\) as a union of some or all of the \(\{A_{0,0}, A_{0,1}, A_{1,0}, A_{1,1}\}\). You do not need to prove your answer. Hint: You may find a Venn diagram helpful, although it is not required.

 (a) Choose \(x = 2\). Then we use a direct proof to show that \(y \geq x \rightarrow y^2 \geq 2y\). Assume that \(y \geq x = 2\). Since \(y \geq 0\), we can multiply both sides by \(y\) and still have a valid inequality: \(y^2 \geq 2y\). QED

 (b) For one direction, assume that \(A \subseteq B\). We will use a direct proof to show that \(\forall S (S \in P(A) \rightarrow S \in P(B))\).

 \[
 \begin{align*}
 S & \in P(A) \quad \text{by assumption} \\
 S & \subseteq A \quad \text{by the definition of a power set} \\
 S & \subseteq B \quad \text{using the fact that } A \subseteq B \\
 S & \in P(B) \quad \text{by the definition of a power set}
 \end{align*}
 \]

 Since \(\forall S (S \in P(A) \rightarrow S \in P(B))\), we have that \(P(A) \subseteq P(B)\).

 For the other direction, assume that \(P(A) \subseteq P(B)\).

 \[
 \begin{align*}
 P(A) & \subseteq P(B) \quad \text{by assumption} \\
 A & \subseteq A \quad \text{set identity (this step could be skipped)} \\
 A & \in P(A) \quad \text{definition of power set} \\
 A & \in P(B) \quad \text{by (1) and (3)} \\
 A & \subseteq B \quad \text{definition of power set}
 \end{align*}
 \]

 (c) \(S \cup T = A_{0,0} \cup A_{0,1} \cup A_{1,0}\).

2. **Number theory.** (25 points; 5+10+10)

 (a) Use Euclid's algorithm to compute the gcd of 328 and 432. Write down the numbers you obtain at the intermediate steps.

 (b) Prove that if \(a, b \in \mathbb{Z}\) and \(b > 0\), then there exist unique \(q, r \in \mathbb{Z}\) satisfying \(a = bq - r\) (note the \(-\) here) and \(0 \leq r < b\).

 (c) One type of cicada living in the Eastern US has a lifecycle of 17 years, has appeared in 1970, 1987, 2004, and next will appear in 2021. Suppose that a parasite that attacks the cicadas has an \(n\)-year lifecycle, and also appeared in 1970, then 1970 + \(n\), 1970 + 2\(n\), etc. Assume that \(1 \leq n \leq 16\). If the cicadas and parasites both appeared in the same year in 1970, in what year will they next both appear?
(a)

\[
\begin{align*}
432 &= 1 \cdot 328 + 104 \\
328 &= 3 \cdot 104 + 16 \\
104 &= 6 \cdot 16 + 8 \\
16 &= 2 \cdot 8 + 0
\end{align*}
\]

The GCD is 8.

(b) First we prove existence. Use the (conventional) division algorithm to obtain integers \(q', r' \) such that
\[
a = bq' + r' \quad \text{and} \quad 0 \leq r' < b.
\]
Define \(r = b - r' \) and \(q = q' + 1 \). Since \(0 \leq r' < b \), we also have \(0 \leq r < b \). Also
\[
bq - r = b(q' + 1) - (b - r') = bq' + r' = a,
\]
so \(q, r \) are a valid solution. For uniqueness, we can either prove it directly (e.g. showing that two different valid pairs of \(q, r \) must be the same) or we can use the fact that this process can be run in reverse. To do this, suppose we are given some \(q, r \) satisfying
\[
a = bq - r \quad \text{and} \quad 0 \leq r < b.
\]
These satisfy \(0 \leq r' < b \) and \(a = bq' + r' \), and so by the (conventional) division algorithm, the pair \(q', r' \) are unique. Since the map from \((q, r) \) to \((q', r') \) is one-to-one, this implies that \(q, r \) must be unique as well.

(c) \(1970 + 17n \).

3. **Induction and recursion.** (30 points; 10+20)

(a) Prove using induction that
\[
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
\]
for all positive integers \(n \).

(b) Euclid’s algorithm for computing the GCD of a pair of positive integers \(a, b \) is as follows:

```
EUCLID(a, b):
  If (a < b) return EUCLID(b, a)
  If b = 0 return a
  Use the division algorithm to compute q, r ∈ \( \mathbb{Z} \) such that 
  a = bq + r and 0 \leq r < b.
  Return EUCLID(b, r)
```

Define \(P(a) \) to the predicate that \(EUCLID(a, b) \) returns \(\gcd(a, b) \) for all \(0 \leq b < a \). Use strong induction to prove that \(EUCLID(a, b) = \gcd(a, b) \) for all positive integers \(a, b \).

(a) Let \(P(n) \) be the predicate that the stated identity holds for \(n \). The base case is \(P(1) \): we verify that
\[
1^2 = 1(1+1)(2+1)/6.
\]
Assume that \(P(k) \) holds for some integer \(k \geq 1 \). Then
\[
\sum_{j=1}^{k+1} j^2 = (k+1)^2 + \sum_{j=1}^{k} j^2 \]
\[
= (k+1)^2 + \frac{k(k+1)(2k+1)}{6} \quad \text{induction hypothesis}
\]
\[
= (k+1) \frac{6(k+1) + k(2k+1)}{6}
\]
\[
= (k+1) \frac{2k^2 + 7k + 6}{6}
\]
\[
= (k+1) \frac{(k+2)(2k+3)}{6}
\]
\[
= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \quad \text{implying } P(k+1)
\]

By induction \(P(n) \) holds for all positive integers \(n \).
(b) Base case: $P(1)$ is the statement that EUCLID(1,0) returns gcd(1,0) = 1, which is true. For the inductive step, assume $P(1) \land P(2) \cdots \land P(a)$. We will attempt to prove $P(a+1)$. For this, we use a direct proof. Assume that b is an integer satisfying $0 \leq b < a+1$. Consider the behavior of EUCLID when given inputs $(a+1,b)$.

If $b = 0$, then it returns $a+1$, which equals gcd$(a+1,0)$, so in this case $P(a+1)$ is true.

If $b > 0$, then the algorithm computes q,r satisfying $a+1 = bq + r$, $0 \leq r < b$ and returns the result of running EUCLID on (b,r). Since $b < a+1$, the inductive hypothesis implies that $P(b)$ holds, and since $r < b$, this means that EUCLID(b,r) returns gcd(b,r). Next Lemma 1 of Section 3.6 of Rosen implies that gcd$(b,r) = \text{gcd}(a+1,b)$. This establishes $P(a+1)$, and so by strong induction, EUCLID(a,b) returns gcd(a,b) whenever $0 \leq b < a$.

If $b > a$, then the first line of EUCLID reduces this to the case when $b < a$.

Finally, if $a = b$, then the division step will obtain $r = 0$, and EUCLID will return the value of EUCLID on $(b,0)$, which is $b = \text{gcd}(a,b)$.

Thus, EUCLID returns the gcd for all pairs of positive integers a,b.

4. Relations. (15 points; 5+10)

(a) Define the rock-paper-scissors relation on $S = \{r,p,s\}$ by $R = \{(r,r),(p,p),(s,s),(p,r),(r,s),(s,p)\}$. Is this relation a partial order? Why or why not?

(b) Consider the relation R on \mathbb{R} given by $\{(x,y) | x - y \in \mathbb{Z}\}$.

i. Prove that R is an equivalence relation.

ii. What is the equivalence class of 1? What is the equivalence class of 0.5?

(a) It’s not a partial order because it’s not transitive: $(p,r) \in R \land (r,s) \in R$ but $(p,s) \notin R$. In English, paper beats-or-ties rock and rock beats-or-ties scissors, but paper does not beat or tie scissors.

(b) i. Reflexivity: $x \in \mathbb{R} \rightarrow x - x = 0 \in \mathbb{Z}$. Symmetry: $(x,y) \in R \rightarrow x - y \in \mathbb{Z} \rightarrow y - x \in \mathbb{Z} \rightarrow (y,x) \in R$. Transitivity: $((x,y) \in R \land (y,z) \in R) \rightarrow (x - y \in \mathbb{Z} \land y - z \in \mathbb{Z}) \rightarrow (x - z \in \mathbb{Z})$.

ii. $\mathbb{Z} \cdot \{x + 1/2 : z \in \mathbb{Z}\}$.

5. Graphs and trees. (15 points; 5+10)

(a) Define the complete graph K_n to be the undirected graph on n vertices with no self-loops and with all possible edges present. Prove by induction that K_n has $\sum_{k=1}^{n-1} k$ edges.

(b) Draw a directed graph with four vertices such that the edges form a partial order. Your score on this question will be 1 point per edge that you draw, or 0 if what you draw isn’t a partial order.

(a) Let $P(n)$ be the claim about K_n. $P(1)$ is true because K_0 has no edges. Assume $P(k)$ is true for some $k \geq 1$. Consider an arbitrary vertex of K_k. It has $k - 1$ edges to the other $k - 1$ vertices. Remove this vertex and the $k - 1$ edges and we are left with K_{k-1}, which by the inductive hypothesis has $\sum_{j=1}^{k-2} j$ edges. Thus K_k has $\sum_{j=1}^{k-2} j + (k - 1) = \sum_{j=1}^{k-1} j$ edges.

(b) Consider the graph with vertices $\{1, 2, 3, 4\}$ and edges $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$.
6. **Circuits and boolean algebra.** (15 points) The goal of this problem is to prove that AND and OR are not functionally complete. Let \(x_1, \ldots, x_n \) be boolean variables for some \(n \geq 1 \). We say that a boolean function \(F(x_1, \ldots, x_n) \) is monotone if
\[
\forall x_1, \ldots, x_n \in \{0, 1\}, \forall i \in [n] (F(x_1, \ldots, x_n) = 1 \rightarrow F(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) = 1).
\]
In other words, if \(F \) equals 1 for some input, then changing one of those inputs to 1 will not change \(F \).

(a) Suppose that \(F(x_1, \ldots, x_n) \) is a boolean function constructed from AND and OR gates. Prove, using structural induction, that \(F \) is monotone.

(b) Give an example of a boolean function that is not monotone.

(a) The base case is to consider a circuit that outputs simply \(x_j \) for some \(j \in [n] \). This is monotone because if \(x_j = 1 \) then setting some \(x_i \) to 1 (whether or not \(i = j \)) will not change this. For the inductive step, we note that an AND-OR circuit can be constructed from smaller AND-OR circuits by combining their output with an AND or an OR. Call the new AND-OR circuit \(F \) and the smaller ones \(G \) and \(H \), so that either \(F = G + H \) or \(F = GH \). By the inductive hypothesis, we assume that \(G \) and \(H \) are monotone. Then changing one of the \(x_i \)'s to 1 will not change either \(G \) or \(H \) from 1 to 0, which will not change \(F \) from 1 to 0.

To make this more formal, we define \(f = F(x_1, \ldots, x_n), f' = F(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) \), \(g = G(x_1, \ldots, x_n) \), \(g' = G(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) \), \(h = H(x_1, \ldots, x_n) \), \(h' = H(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) \).

The first case is that \(F = GH \) so that \(f = gh \) and \(f' = g'h' \). In this case, \(f = 1 \) if and only if \(g \) and \(h \) are both 1, and by the inductive hypothesis, this implies that \(g' \) and \(h' \) are both 1, which means that \(f' = 1 \). The second case is that \(F = G + H \) so that \(f = g + h \) and \(f' = g' + h' \). In this case, \(f = 1 \) implies that \(g = 1 \) or \(h = 1 \). By the inductive hypothesis, \(g' = 1 \) or \(h' = 1 \), and thus \(f' = 1 \).

(b) \(F(x_1) = \bar{x}_1 \).

7. **Turing Machines and Finite state machines.** (25 points)

(a) Draw a DFA that accepts the same strings as the NFA in Figure 1.

(b) Construct a Turing machine that takes as input a binary string, and halts in an accepting state with the entire tape filled with blank symbols and with the tape head in its starting position.
Figure 2: 7a: A DFA corresponding to the NFA above. States with no incoming transitions have been omitted.

Figure 3: 7b: A Turing machine that erases a binary string and leaves the tape head where it started.