CSE 311: Foundations of Computing I
Assignment \#6
due: Fri, May 20, 1:30pm

1. (15 points) Section 4.3, exercise 26, all parts
2. (10 points) Section 4.4, exercise 10
3. (10 points) Section 4.4, exercise 22
4. (5 points) Chapter 4, Supplementary exercise 12(a) (on page 330)
5. (16 points) Section 8.1, exercise 6 , all parts. Your answer should be in the form of a table with Y / N in each entry. You don't need to justify your answers.
6. (10 points) Section 8.1, exercise 8, both parts
7. (10 points) Section 8.1, exercise 14
8. (24 points) Let p be a prime, and let $S:=[p-1]=\{1, \ldots, p-1\}$. For any $a \in S$, define the relation R on S by $\left\{(x, y): x, y \in S \wedge \exists j \in \mathbb{N}\left(x a^{j} \equiv y(\bmod p)\right)\right\}$. In parts (b) and (c), define r to be the smallest positive integer satisfying $a^{r} \equiv 1 \quad(\bmod p)$.
(a) Prove that R is an equivalence relation.
(b) Prove that for $x \in S$, the equivalence class $[x]$ is equal to $\left\{x, a x \bmod p, a^{2} x \bmod p, \ldots, a^{r-1} x \bmod \right.$ $p\}=\left\{x a^{j} \bmod p: 0 \leq j<r\right\}$.
(c) Prove that $r \mid p-1$. What can you conclude about $a^{p-1} \bmod p$?
