CSE 311: Foundations of Computing I
Assignment \#4
due: Fri, Apr 29, 1:30pm

1. (15 points) Section 3.4, exercise 14
2. (15 points) Section 3.5, exercise 18
3. (15 points) Define $\phi(n)$ as in the previous problem. Let p_{1}, p_{2}, p_{3} be distinct primes.
(a) Calclulate $\phi(15)$.
(b) State and prove a formula for $\phi\left(p_{1} p_{2}\right)$. Hint: use inclusion-exclusion.
(c) State and prove a formula for $\phi\left(p_{1} p_{2} p_{3}\right)$.
4. Euclid's algorithm:
(a) (5 points) Section 3.6, exercise 24c
(b) (5 points) Find integers m, n such that $123 m+277 n=\operatorname{gcd}(123,277)$.
5. (10 points) In Western music, the octave is divided into 12 semitones. Normally they are named A, $A^{\sharp}, B, C, C^{\sharp}, D, D^{\sharp}, E, F, F^{\sharp}, G, G^{\sharp}$, but for this problem, call them $\{0,1,2,3,4,5,6,7,8,9,10,11\}$. A "perfect fifth" is an interval of 7 semitones. When we reach the top of the scale (G^{\sharp} or 11), we repeat from the bottom (A or 0). This means that a perfect fifth starting on note x will end on note $x+7 \bmod 12$.
(a) If we start on note x and ascend by perfect fifths, we will encounter $x, x+7 \bmod 12, x+14 \bmod 12$, etc. How many perfect fifths do we need to ascend by until we come back to note x ?
(b) The dissonant "tritone" is an interval of 6 semitones. If we start with note x, then how many tritones do we need to ascend by until we come back to x ?
6. (10 points) Solve the congruence $14 x \equiv 7 \quad(\bmod 17)$.
7. (10 points) Section 3.7, exercise 14 (both parts)
8. (15 points) Suppose that x, y, n are all positive integers with $n>1$. Suppose that $x \not \equiv 0(\bmod n)$ and $y \not \equiv 0(\bmod n)$ but $x y \equiv 0(\bmod n)$. Prove that n must be composite.
