CSE 311 Foundations of Computing I

Lecture 27
Computability: Turing machines, Undecidability of the Halting Problem
Autumn 2011

Announcements

• Reading
 — 7th edition: p. 201 and 13.5
 — 6th edition: p 177 and 12.5

Last lecture highlights

• Cardinality
 • A set S is countable iff we can write it as
 $S = \{s_1, s_2, s_3, \ldots\}$ indexed by \mathbb{N}
 • Set of rationals is countable
 — “dovetailing”
 • Σ^* is countable
 — $(0,1)^* = \{0,1,00,01,10,11,000,001,010,011,100,101,\ldots\}$
 • Set of all (Java) programs is countable

Last lecture highlights

• The set of real numbers is not countable
 — “diagonalization”
 — Why doesn’t this show that the rationals aren’t countable?

Do we care?

• Are any of these functions, ones that we would actually want to compute?
 — The argument does not even give any example of something that can’t be done, it just says that such an example exists
• We haven’t used much of anything about what computers (programs or people) can do
 — Once we figure that out, we’ll be able to show that some of these functions are really important
Turing Machines

Church-Turing Thesis
Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

- Evidence
 - Intuitive justification
 - Huge numbers of equivalent models to TM's based on radically different ideas

Components of Turing's Intuitive Model of Computers

- Finite Control
 - Brain/CPU that has only a finite # of possible “states of mind”
- Recording medium
 - An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper
- Focus of attention
 - Finite control can only focus on a small portion of the recording medium at once
 - Focus of attention can only shift a small amount at a time

What is a Turing Machine?

- Recording Medium
 - An infinite read/write "tape" marked off into cells
 - Each cell can store one symbol or be “blank”
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape - starts on input
- In each step, a Turing Machine
 - Reads the currently scanned symbol
 - Based on state of mind and scanned symbol
 - Overwrites symbol in scanned cell
 - Moves read/write head left or right one cell
 - Changes to a new state
- Each Turing Machine is specified by its finite set of rules

Turing Machine ≡ Ideal Java/C Program

- Ideal C/C++/Java programs
 - Just like the C/C++/Java you’re used to programming with, except you never run out of memory
 - constructor methods always succeed
 - malloc never fails
- Equivalent to Turing machines except a lot easier to program!
 - Turing machine definition is useful for breaking computation down into simplest steps
 - We only care about high level so we use programs
Turing’s idea: Machines as data

• Original Turing machine definition
 – A different "machine" M for each task
 – Each machine M is defined by a finite set of possible operations on finite set of symbols
 • M has a finite description as a sequence of symbols, its "code"
• You already are used to this idea:
 – We’ll write $<P>$ for the code of program P
 – i.e. $<P>$ is the program text as a sequence of ASCII symbols and P is what actually executes

Turing’s Idea: A Universal Turing Machine

• A Turing machine interpreter U
 – On input $<P>$ and its input x, U outputs the same thing as P does on input x
 – At each step it decodes which operation P would have performed and simulates it.
• One Turing machine is enough
 – Basis for modern stored-program computer
 • Von Neumann studied Turing’s UTM design

Halting Problem

• Given: the code of a program P and an input x for P, i.e. given $<P>, x$
• Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Undecidability of the Halting Problem

• Suppose that there is a program H that computes the answer to the Halting Problem
• We’ll build a table with
 – all the possible programs down one side
 – all the possible inputs along the other side
• Then we’ll use the supposed program H to build a new program that can’t possibly be in the table!

A note on the table

• To make it easier to draw we’ve allowed every string to be the code of some program
 – We can just interpret each string that isn’t well-formed to always halt whenever we try to run it.
• Alternatively, we could have only included rows and columns that are codes for programs
 – These are the only ones that matter anyway

Autumn 2011 CSE 311
Diagonal construction

• Consider a row corresponding to some program code \(<P>\)
 — the infinite sequence of 0's and 1's in that row of the table is like a fingerprint of \(P\)
• Suppose a program \(H\) for the halting problem exists
 — Then it could be used to figure out the value of any entry in the table
 — We’ll use it to create a new program \(D\) that has a different fingerprint from every row in the table
 — But that’s impossible since there is a row for every program! Contradiction

\[
\begin{array}{cccccccccccc}
\lambda & 0 & 1 & 00 & 10 & 11 & 000 & 001 & 010 & 011 & \ldots \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & \ldots \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & \ldots \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \ldots \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \ldots \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \ldots \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \ldots \\
\end{array}
\]

\(\langle P, x \rangle\) entry is 1 if program \(P\) halts on input \(x\) and 0 if it runs forever

Want to create a new program whose halting properties are given by the flipped diagonal

That’s it!

• We proved that there is no computer program that can solve the Halting Problem.
• This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have
 — The full story is even worse

Code for \(D\) assuming subroutine \(H\) that solves the Halting Problem

• Function \(D(x)\):
 — if \(H(x,x)=1\) then
 • while (true); /* loop forever */
 — else
 • no-op; /* do nothing and halt */
 — endif

• \(D\)'s fingerprint is different from every row of the table
 — \(D\) can’t be a program so \(H\) cannot exist!
Using undecidability of the halting problem

- We have one problem that we know is impossible to solve
 - Halting problem
- Showing this took serious effort
- We’d like to use this fact to derive that other problems are impossible to solve
 - don’t want to go back to square one to do it

Another undecidable problem

The “always halts” problem
- Given: <Q>, the code of a program Q
- Output: 1 if Q halts on every input
 0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:
- Show we could solve the Halting Problem if we had a solution for the “always halts” problem.
- No program solving for Halting Problem exists \(\Rightarrow \) no program solving the “always halts” problem exists

What we would like

- To solve the Halting Problem need to handle inputs of the form \(<P>,x>\)
- Our program will create a new program code \(<Q>\) so that
 - if P halts on input x
 - then Q always halts
 - if P runs forever on input x
 - then Q runs forever on at least one input
- In fact, the \(<Q>\) we create will act the same on all inputs

Creating \(<Q>\) from \(<P>,x>\)

- Given \(<P>,x>\) modify code of P to:
 - Replace all input statements of P that read input \(x\) by assignment statements that ‘hard-code’ \(x\) in P
- This creates a new program text \(<Q>\)
 - It would be easy to write a program T that changes \(<P>,x>\) to \(<Q>\)

The transformation

```c
int main(){
  ...
  scanf("%d",&u);
  ...
  scanf("%d",&v);
  ...
}
123 712
(<P>,x)
```

```c
int main(){
  ...
  u = 123;
  ...
  v = 712;
  ...
}
<Q>
```

Program to solve Halting Problem if “always halts” were decidable

- Suppose “always halts” were solvable by program A
- On input \(<P>,x>\)
 - execute the program T to transform \(<P>,x>\) into \(<Q>\) as on last slide
 - call A with \(<Q>\) (the output of T) as its input and use A’s output as the answer.
- This would do the job of H which we know can’t exist so A can’t exist