CSE 311 Foundations of Computing I
Lecture 16
Functions on Recursively Defined Sets and Structural Induction
Autumn 2011

Highlights from last lecture

• Recursively defined sets
 – Basis step: Some specific elements are in S
 – Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S
• Structural Induction:
 1. By induction we will show that P(x) is true for every x in S
 2. Base Case: Show that P is true for all elements of S mentioned in the Basis step
 3. Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
 4. Inductive Step: Prove that P holds for each new element constructed in the Recursive step using the elements mentioned in the Inductive Hypothesis
 5. Conclusion: Result follows by induction

Strings

• An alphabet \(\Sigma \) is any finite set of characters.
• The set \(\Sigma^* \) of strings over the alphabet \(\Sigma \) is defined by
 – Basis: \(\lambda \in \Sigma^* \) (\(\lambda \) is the empty string)
 – Recursive: If \(w \in \Sigma^* \), \(x \in \Sigma \), then \(wx \in \Sigma^* \)

Palindromes

• Palindromes are strings that are the same backwards and forwards
• Basis: \(\lambda \) is a palindrome and any \(a \in \Sigma \) is a palindrome
• Recursive step: If \(p \) is a palindrome then \(apa \) is a palindrome for every \(a \in \Sigma \)

Function definitions on recursively defined sets

\[\text{len}(\lambda) = 0; \]
\[\text{len}(wa) = 1 + \text{len}(w); \text{ for } w \in \Sigma^*, a \in \Sigma \]

Reversal:
\[\lambda^R = \lambda, \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma \]

Concatenation:
\[w \cdot \lambda = w \text{ for } w \in \Sigma^* \]
\[w_1 \cdot w_2 a = (w_1 \cdot w_2)a \text{ for } w_1, w_2 \in \Sigma^*, a \in \Sigma \]
len(x•y)=len(x)+len(y) for all strings x and y

Rooted Binary trees

• Basis: is a rooted binary tree
• Recursive Step: If \(T_1 \) and \(T_2 \) are rooted binary trees then so is:

Functions defined on rooted binary trees

• \(\text{size}(●)=1 \)
• \(\text{size}(\text{tree}) = 1+\text{size}(T_1)+\text{size}(T_2) \)
• \(\text{height}(●)=0 \)
• \(\text{height}(\text{tree}) = 1+\max\{\text{height}(T_1),\text{height}(T_2)\} \)

For every rooted binary tree T

\[\text{size}(T) \leq 2^{\text{height}(T)+1} - 1 \]