Announcements

- Reading assignments
 - Today: 5.2, 5.3 7th Edition
 - 4.2, 4.3 6th Edition
 - 3.3, 3.4 5th Edition
 - Monday: 5.3 (7th), 4.3 (6th), 3.4 (5th)
- Midterm next Friday, Nov 4
 - Closed book, closed notes
 - Practice midterm available Monday
 - Extra office hours Thursday, times TBA

Highlights from last lecture

- Mathematical Induction
 \[P(0) \forall k \geq 0 (P(k) \rightarrow P(k+1)) \therefore \forall n \geq 0 P(n) \]
- Induction proof layout:
 1. By induction we will show that P(n) is true for every n \geq 0
 2. Base Case: Prove P(0)
 3. Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer k \geq 0
 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(k) is true
 5. Conclusion: Result follows by induction

Harmonic Numbers

\[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} \]
Prove \(H_{2n} \geq 1 + \frac{n}{2} \) for all \(n \geq 1 \)

Cute Application: Checkerboard Tiling with Trinominos

Prove that a \(2^n \times 2^n \) checkerboard with one square removed can be tiled with:

Strong Induction

\[P(0) \forall k ((P(0) \land P(1) \land P(2) \land \ldots \land P(k)) \rightarrow P(k+1)) \therefore \forall n P(n) \]
Follows from ordinary induction applied to \(Q(n) = P(0) \land P(1) \land P(2) \land \ldots \land P(n) \)
Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(j)$ is true for all values $\leq k$
5. Conclusion: Result follows by induction

Every integer ≥ 2 is the product of primes

Recursive Definitions of Functions

- $F(0) = 0$; $F(n + 1) = F(n) + 1$;
- $G(0) = 1$; $G(n + 1) = 2 \times G(n)$;
- $0! = 1$; $(n+1)! = (n+1) \times n!$
- $H(0) = 1$; $H(n + 1) = 2^H(n)$

Fibonacci Numbers

- $f_0 = 0$; $f_1 = 1$; $f_n = f_{n-1} + f_{n-2}$

Bounding the Fibonacci Numbers

- Theorem: $2^{n/2-1} \leq f_n < 2^n$ for $n \geq 2$

Fibonacci numbers and the running time of Euclid’s algorithm

- Theorem: Suppose that Euclid’s algorithm takes n steps for $\gcd(a,b)$ with $a > b$, then $a \geq f_{n+2}$ so $a \geq 2^{(n+1)/2}$
 -- # of steps at most one more than twice # of bits of a
- Set $r_{n+1} = a$, $r_n = b$ then Euclid’s alg. computes
 $r_{n+1} = q_0 f_n + r_{n-1}$ each quotient $q_i \geq 1$
 $r_n = q_0 f_{n-1} + r_{n-2}$
 \cdots
 $r_3 = q_1 f_2 + f_1$
 $r_2 = q_1 f_1$
Recursive Definitions of Sets

- Recursive definition
 - Basis step: \(0 \in S\)
 - Recursive step: if \(x \in S\), then \(x + 2 \in S\)
 - Exclusion rule: Every element in \(S\) follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: \(6 \in S; 15 \in S;\)
Recursive: if \(x, y \in S\), then \(x + y \in S;\)

Basis: \([1, 1, 0] \in S, [0, 1, 1] \in S;\)
Recursive: if \([x, y, z] \in S, \alpha \in \mathbb{R}\), then \([\alpha x, \alpha y, \alpha z] \in S\)
then \([x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S\)

Powers of 3

Strings

- The set \(\Sigma^*\) of strings over the alphabet \(\Sigma\) is defined
 - Basis: \(\lambda \in S\) (\(\lambda\) is the empty string)
 - Recursive: if \(w \in \Sigma^*, x \in \Sigma\), then \(wx \in \Sigma^*\)

Function definitions on recursively defined sets

\(\text{Len}(\lambda) = 0;\)
\(\text{Len}(wx) = 1 + \text{Len}(w); \text{for } w \in \Sigma^*, x \in \Sigma\)

\(\text{Concat}(w, \lambda) = w \text{ for } w \in \Sigma^*;\)
\(\text{Concat}(w_1, w_2, x) = \text{Concat}(w_1, w_2)x \text{ for } w_1, w_2 \in \Sigma^*, x \in \Sigma\)