Announcements

• Reading assignments
 – Today:
 • 4.1-4.2 7th Edition
 • 3.4, 3.6 up to p. 227 6th Edition
 • 2.4, 2.5 up to p. 177 5th Edition
• Homework 4
 – Coming soon . . .

Highlights from last lecture

• Set theory and ties to logic
• Lots of terminology
• Bit vector representation of characteristic functions
 • Bitwise operations for Set operations

Unix/Linux file permissions

• `ls -l`

 drwxr-xr-x ... Documents/
 -rw-r--r-- ... file1

• Permissions maintained as bit vectors
 – Letter means bit is 1 – means bit is 0.
• How is `chmod og+r` implemented?

A simple identity

• If x and y are bits: \((x \oplus y) \oplus y = ?\)

• What if x and y are bit-vectors?

Private Key Cryptography

• Alice wants to be able to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation, cannot tell what Alice’s message is

• Alice and Bob can get together and privately share a secret key K ahead of time.
One-time pad

- Alice and Bob privately share random \(n \)-bit vector \(K \)
 - Eve does not know \(K \)
- Later, Alice has \(n \)-bit message \(m \) to send to Bob
 - Alice computes \(C = m \oplus K \)
 - Alice sends \(C \) to Bob
 - Bob computes \(m = C \oplus K \) which is \((m \oplus K) \oplus K \)
- Eve cannot figure out \(m \) from \(C \) unless she can guess \(K \)

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

Russell’s Paradox

\[S = \{ x \mid x \notin x \} \]

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

What are the values computed?

```csharp
public void Test1() {
    byte x = 250;
    byte y = 20;
    byte z = (byte) (x + y);
    Console.WriteLine(z);
}

public void Test2() {
    sbyte x = 120;
    sbyte y = 20;
    sbyte z = (sbyte) (x + y);
    Console.WriteLine(z);
}
```
Arithmetic mod 7

- \(a +_7 b = (a + b) \mod 7 \)
- \(a \times_7 b = (a \times b) \mod 7 \)

Divisibility

Integers \(a, b \), with \(a \neq 0 \), we say that \(a \) divides \(b \) is there is an integer \(k \) such that \(b = ak \). The notation \(a \mid b \) denotes \(a \) divides \(b \).

Division Theorem

Let \(a \) be an integer and \(d \) a positive integer. Then there are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

\[
q = a \div d \quad r = a \mod d
\]

Note: \(r \geq 0 \) even if \(a < 0 \). Not quite the same as \(a \% d \).

Modular Arithmetic

Let \(a \) and \(b \) be integers, and \(m \) be a positive integer. We say \(a \) is congruent to \(b \) modulo \(m \) if \(m \) divides \(a - b \). We use the notation \(a \equiv b \pmod m \) to indicate that \(a \) is congruent to \(b \) modulo \(m \).

Let \(a \) and \(b \) be integers, and let \(m \) be a positive integer. Then \(a \equiv b \pmod m \) if and only if \(a \mod m = b \mod m \).

Let \(m \) be a positive integer. If \(a \equiv b \pmod m \) and \(c \equiv d \pmod m \), then
- \(a + c \equiv b + d \pmod m \)
- \(ac \equiv bd \pmod m \)
Example

Let \(n \) be an integer, prove that \(n^2 \equiv 0 \pmod{4} \) or \(n^2 \equiv 1 \pmod{4} \).