1. Composing relations:

Recall: \(S \circ R = \{(a, c) \mid \exists b \text{ s.t.} (a, b) \in R \text{ and } (b, c) \in S\} \)

We define the following relations:

- \((a, b) \in \text{Sibling}: \) \(b \) is \(a \)'s sibling
- \((a, b) \in \text{Mother}: \) \(b \) is \(a \)'s mother
- \((a, b) \in \text{Parent}: \) \(b \) is \(a \)'s parent
- \((a, b) \in \text{Daughter}: \) \(b \) is \(a \)'s daughter
- \((a, b) \in \text{Son}: \) \(b \) is \(a \)'s son
- \((a, b) \in \text{Child}: \) \(b \) is \(a \)'s child

Use these relations to express the following:

(a) \(\{(a, c) \mid c \text{ is } a \text{'s niece}\} \): \(\text{Daughter} \circ \text{Sibling} \)
(b) \(\{(a, c) \mid c \text{ is } a \text{'s grandson}\} \): \(\text{Son} \circ \text{Child} \)
(c) \(\{(a, c) \mid c \text{ is } a \text{'s grandmother}\} \): \(\text{Mother} \circ \text{Parent} \)

2. Proving relationship properties

Prove that the relation \(R \) on a set \(A \) is symmetric if and only if \(R = R^{-1} \).

For an "if and only if" proof we need to prove both directions:

(a) "only if" direction: Prove that if \(R \) is symmetric, then \(R = R^{-1} \)

Assume that \(R \) is symmetric.

To show that \(R = R^{-1} \), we must show both directions:

- Show that \(R \subseteq R^{-1} \)
 Let \((x, y) \) be an arbitrary member of \(R \). Then:
 \((y, x) \in R \) because \(R \) is symmetric
 \((x, y) \in R^{-1} \) by definition of inverse
 \(\text{QED} \)

- Show that \(R^{-1} \subseteq R \)
 Let \((x, y) \) be an arbitrary member of \(R^{-1} \). Then:
 \((y, x) \in R \) by definition of inverse
 \((x, y) \in R \) because \(R \) is symmetric
 \(\text{QED} \)

We have shown by direct proof that if \(R \) is symmetric then \(R = R^{-1} \).
(b) “if” direction: Prove that if $R = R^{-1}$, then R is symmetric

Assume $R = R^{-1}$. To show that R is symmetric, we must show that for any arbitrary (x, y) in R, (y, x) is also in R.

Let (x, y) be an arbitrary member of R.

$(y, x) \in R^{-1}$ by definition of inverse

$(y, x) \in R$ by assumption that $R = R^{-1}$

QED

We have shown by direct proof that if $R = R^{-1}$, then R is symmetric.

We have shown both the "if" and "only if" directions. Therefore, we have proven that the relation R on a set A is symmetric if and only if $R = R^{-1}$.