October 12, 2011

 - Interactive Demonstration Applets
 - Truth Tables
 - Equivalences
 - Self Assessments
 - Conditional Statements
 - Quantified Statements
 - Guide to Writing Proofs
 - Common Mistakes

2. Prove that \((p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r\) by rewriting with equivalences.

\[
\begin{align*}
(p \rightarrow r) \land (q \rightarrow r) & \equiv (p \lor q) \rightarrow r \\
& \equiv \neg(p \lor q) \lor r \quad \text{Law of implication} \\
& \equiv (\neg p \land \neg q) \lor r \quad \text{DeMorgan’s} \\
& \equiv (\neg p \lor r) \land (\neg q \lor r) \quad \text{Distributive} \\
& \equiv (p \rightarrow r) \land (q \rightarrow r) \quad \text{Law of implication}
\end{align*}
\]

3. Prove that \((p \land q) \rightarrow (p \rightarrow q)\) is a tautology by rewriting with equivalences.

\[
\begin{align*}
(p \land q) \rightarrow (p \rightarrow q) & \equiv T \\
\neg(p \land q) \lor (p \rightarrow q) & \quad \text{Law of implication} \\
\neg(p \land q) \lor (\neg p \lor q) & \quad \text{Law of implication} \\
(\neg p \lor \neg q) \lor (\neg p \lor q) & \quad \text{DeMorgan} \\
\neg p \lor \neg q \lor \neg p \lor q & \quad \text{Associative} \\
\neg p \lor \neg q \lor q \lor \neg p & \quad \text{Commutative} \\
\neg p \lor T \lor \neg p & \quad \text{Negation} \\
\neg p \lor T & \quad \text{Domination} \\
T & \quad \text{Domination}
\end{align*}
\]
4. Find the values, if any, of the Boolean variable x that satisfies these equations:

(a) $x \cdot 1 = 0$ 0
(b) $x + x = 0$ 0
(c) $x \cdot 1 = x$ 0, 1
(d) $x \cdot \bar{x} = 1$ none

5. Use truth tables to express the values of these Boolean functions:

(a) $F(x, y, z) = xy + xz$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>xy</th>
<th>xz</th>
<th>$xy + xz$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) $F(x, y, z) = \overline{y}(xz + \bar{x}\bar{z})$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>\overline{y}</th>
<th>xz</th>
<th>$\bar{x}\bar{z}$</th>
<th>$\overline{y}(xz + \bar{x}\bar{z})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

6. For a Boolean function on each of the following number of inputs:

- How many rows are in the truth table?
- How many different Boolean functions are possible?
 - 3 inputs ("a Boolean function of degree 3") 8 rows; 2^8 functions
 - 4 inputs 16 rows; 2^{16} functions
 - 30 inputs 2^{30} rows; $2^{(2^{30})}$ (about $2^{4 \text{billion}}$) functions

In general for n variables there are 2^n rows and $2^{(2^n)}$ possible functions.

7. Half adder

(a) Write the truth table for a half adder (takes two bits, x and y, and outputs two bits - s (sum) and c (carry):
(b) Use the truth table to write the boolean expressions for outputs \(s \) and \(c \). (Don’t minimize.)

\[
\begin{array}{c|c|c|c}
 x & y & s & c \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 1 \\
\end{array}
\]

\(s = \bar{x}y + x\bar{y} \)

\(c = xy \)

(c) How many gates will you need in a circuit that implements these expressions? \(6 \text{ gates: 3 AND, 1 OR, 2 NOT} \)

(d) Draw the circuit.

(e) Minimize the expression for \(s \). Now how many gates do you need?

\(s = (x + y)\bar{xy}; \quad 4 \text{ gates: 2 AND, 1 OR, 1 NOT} \) (Notice that we can reuse the \(xy \) AND gate.)

(f) Draw the simplified circuit.

Note: All of the above was done with just AND, OR and NOT gates. If we allow XOR gates, then we can have a much simpler circuit with just 2 gates (1 XOR, 1 AND):
\[c = xy \]
\[s = x \oplus y \]

\[\begin{array}{ccccc}
\hline
x & y & c \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\hline
\end{array} \]

8. Repeat the steps from the above problem (using \(t \) as the single output value) for the Boolean function given by the following truth table:

\[\begin{array}{cccccc}
\hline
x & y & z & t \\
\hline
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\hline
\end{array} \]

(a) Use the truth table to write the boolean expression for \(t \):
\[t = xyz + \overline{xyz} \]

(b) How many gates would you need for this circuit?
4: 2 AND, 1 OR, 1 NOT

(c) Draw the circuit:

\[\begin{array}{ccccc}
\hline
x & \overline{y} & AND & OR & t \\
\hline
y & z & \overline{z} & & \\
\hline
\end{array} \]

(d) Minimize the expression for \(t \). Now how many do you need?:
\[t = yz \] just 1 ADD gate

(e) Draw the simplified circuit:

\[\begin{array}{ccccc}
\hline
y & AND & t \\
\hline
z & \overline{z} & & \\
\hline
\end{array} \]