In problems 1 and 2, \(f_n \) is the \(n \)th Fibonacci number where \(f_0 = 0 \), \(f_1 = 1 \) and \(f_k = f_{k-1} + f_{k-2} \) for \(k \geq 2 \).

Problem 1:
Prove that \(f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1} \) when \(n \) is a positive integer.

Problem 2:
Let
\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}
\]
prove that
\[
A^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}
\]
when \(n \) is a positive integer.

Problem 3:
Give a recursive definition of
a) The set of integers that are congruent to 1 or 3 modulo 7.

b) The set of polynomials in \(x \) with integer coefficients.

Problem 4:
Give a recursive definition of the set of bit strings that have the same number of zeros and ones.

Problem 5:
Give a recursive definition of the following set of ordered pairs of positive integers:
\[
S = \{(a, b) \mid a \in \mathbb{Z}^+, b \in \mathbb{Z}^+, \text{and } a + b \text{ is odd}\} \]