
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 8 – Program structure, expressions, dangling
pointers, printf/scanf

Where We Are

  Last time

-  Memory model for a process and the stack

-  Simple programs and introduction to pointers

  Today

-  Structure of a program, variable scope & storage

-  Passing arguments to functions

-  Left vs right expressions

-  Dangling pointers and NULL value

-  Formatted input and output

2 CSE 303 - Winter 2010

Structure of a C Program

// First include all header files (more later)

#include <stdio.h>

//Declare global variables (try to avoid them)

int global_int;

// Function must be defined before it is used

// Use function prototypes if needed

void my_function(int a, int b) { ... }

...

int main() { ... }
3 CSE 303 - Winter 2010

Address Space of a Unix Process

static data (globals)
(data segment)

code
(text segment)

stack
(dynamically allocated)

heap
(dynamically allocated)

0x00000000

0xFFFFFFFF

Address space

Address space
is just array of
8-bit bytes

Typical total
size is: 232 or 264

We will
assume that
integer is 4 bytes

A pointer is
just an index
into this array

4 CSE 303 - Winter 2010

Storage Duration and Scope

  Scope

-  Global variables can be used in any function that
follows their declaration

-  Local variables can only be used in the block where
they are defined

  Storage class (lifetime)

-  Global vars exist for the duration of the program

-  Local vars exist while the block where they are
defined is active

-  Static local vars retain their value between
invocations

5 CSE 303 - Winter 2010

Passing Arguments to Functions

  In C, arguments are always passed by value

-  Function receives a copy of the argument

-  Changes to this copy will not affect original

  What if we want to modify argument?

-  Use pointers

  Example: scope.c

  Note: In C++, arguments can also be passed by
reference (more later)

6 CSE 303 - Winter 2010

Passing Arguments to Functions

Return address

Info for returned val

3

...

Activation record for func

void main() {

 int i = 3;
 func(i);

}

void main() {

 int i = 3;
 func(&i);

}

Return address

Info for returned val

0xFFFAACF4

...

Activation record for func

7

Left vs right

  To “really get C”, it helps to understand the
difference between the left side and the right side of
an assignment

-  Law #1: Left-expressions evaluated to locations
(addresses)

-  Law #2: Right expressions evaluated to values

-  Law #3: Values include addresses

  Examples

int x = 3;

int *p;

p = &x;

3

0xbff825d1

x

p
0xbff825d1

0xbff825cD
8 CSE 303 - Winter 2010

Left vs Right (continued)

  Key difference is the “rule” for variables

-  As left-expression, a variable is a location and we are
done

-  As right-expression, a variable gets evaluated to the
content of its location and then we are done

  Note: this is true in Java as well

9 CSE 303 - Winter 2010

Examples Left vs Right

  Examples

int x = 3;

int y;

int *p;

int *q;

p = &x;

q = p;

q = &y;

*q = *p;

XXX

0xbff825d1

y

p
0xbff825cd

0xbff825c9
XXX q

0xbff825c5

3 x
0xbff825d1

10 CSE 303 - Winter 2010

Examples Left vs Right

  Examples

int x = 3;

int y;

int *p;

int *q;

p = &x;

q = p;

q = &y;

*q = *p;

XXX

0xbff825d1

y

p
0xbff825cd

0xbff825c9
0xbff825d1 q

0xbff825c5

3 x
0xbff825d1

11 CSE 303 - Winter 2010

Examples Left vs Right

  Examples

int x = 3;

int y;

int *p;

int *q;

p = &x;

q = p;

q = &y;

*q = *p;

XXX

0xbff825d1

y

p
0xbff825cd

0xbff825c9
0xbff825cd q

0xbff825c5

3 x
0xbff825d1

12 CSE 303 - Winter 2010

Examples Left vs Right

  Examples

int x = 3;

int y;

int *p;

int *q;

p = &x;

q = p;

q = &y;

*q = *p;

3

0xbff825d1

y

p
0xbff825cd

0xbff825c9
0xbff825cd q

0xbff825c5

3 x
0xbff825d1

13 CSE 303 - Winter 2010

Pointers to pointers

int i=2;

int *p1;

p1 = &i;

int **p2;

p2 = &p1;

int ***p3;

p3 = &p2;

**p2 = 5;

***p3 = 10;

0xbff825cd p2
0xbff825c9

0xbff825d1 p1
0xbff825cd

2 i
0xbff825d1

0xbff825c9 p3
0xbff825c5

14 CSE 303 - Winter 2010

Both change the value of i

Additional examples in pointer-to-pointer.c

NULL Value

  The value of a pointer is an address

  A pointer can also hold the value 0 or NULL

  A pointer with the value NULL points to nothing

  NULL is a symbolic constant defined in stddef.h
(included by stdio.h)

  Example: null-pointer.c

15 CSE 303 - Winter 2010

A Note About Boolean Type

  In C, any integer type may be used to represent a
boolean value

-  Anything but 0 (or NULL) is true

-  0 and NULL are false

  C99 introduces an “extended integer” type named
bool and boolean values true and false (you must
include stdbool.h)

  Example: bool.c

16 CSE 303 - Winter 2010

Dangling Pointers

  Pointer initialized to address of piece of data

  Storage for data is reclaimed because

-  Lifetime of variable ends

-  Or explicitly deallocated (when using the heap)

  The pointer is left “dangling”

-  Points to undefined location

  If you're lucky... result will be KABOOM!!

  Frequently, causes subtle and silent bugs!

  Example: dangling.c

17 CSE 303 - Winter 2010

Formatted Input and Output

  What we already know

-  Input and output is performed with streams

-  Streams are just sequences of bytes

-  stdin connected to keyboard

-  stdout and stderr connected to screen

  Formatted output: printf

  Formatted input: scanf

18 CSE 303 - Winter 2010

Formatted Input and Output

  printf(“format string”, v1, v2, ...);

  scanf(“format string”, v1, v2, ...);

  Basic formats

-  %d: int

-  %f: float, double

-  %c: char

-  %s: char* (strings)

-  %e: scientific notation

  Examples: format.c

  Also take a look at fileIO.c (needed for hw3)

19 CSE 303 - Winter 2010

Readings

  Programming in C

-  Skim Chapters 4, 5, 6, and 8

-  Chapter 11 Pointers and Functions (pp 254-259)

-  Chapter 16 Formatted I/O (pp 348-359)

20 CSE 303 - Winter 2010

