
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 7 – Introduction to C

Welcome to C

  Going from Java to C is like going from an
automatic transmission to a stick shift

-  Lower level: much more is left for you to do

-  Unsafe: you can set your computer on fire

-  C standard library is much smaller

-  Similar syntax can both help and confuse

-  Not object oriented: paradigm shift

  We will also learn C++ later this quarter

-  Both better and worse than C

2 CSE 303 - Winter 2010

Our Plan for Learning C

  Learn non-object oriented programming

  Gain a deep understanding of

-  Memory management

-  Pointers

-  Program execution

-  We will “look under the covers”

  Acquire good debugging skills

  Acquire software development techniques

  And also learn the C syntax

3 CSE 303 - Winter 2010

Our Plan for Today

  Introduction to memory management

  Simple C programs

  A first look at pointers

4 CSE 303 - Winter 2010

Address Space of a Unix Process

static data (globals)
(data segment)

code
(text segment)

stack
(dynamically allocated)

heap
(dynamically allocated)

0x00000000

0xFFFFFFFF

Address space

Address space
is just array of
8-bit bytes

Typical total
size is: 232 or 264

We will
assume that
integer is 4 bytes

A pointer is
just an index
into this array

5 CSE 303 - Winter 2010

More about the Address Space

  An address refers to a position in this array

  Trying to read an unused part of the array may
cause a “segmentation fault” (crash)

  Code: instructions of program (read-only)

  Static data contains global variables

  Stack: local variables and code address

-  Grows and shrinks as program executes

  Heap: data (Objects returned by Java's new)

-  Must manage manually

6 CSE 303 - Winter 2010

Hello World

#include <stdio.h>

/*
 * First C program
 */
int main() {

 printf("Hello World\n");

 return 0;

}

7 CSE 303 - Winter 2010

Testing Hello World

  To compile the program, hello.c

gcc -g -Wall -o hi hello.c

  To execute the program:

./hi

8 CSE 303 - Winter 2010

Compile Command Meaning

gcc -g -Wall -o hi hello.c

Meaning:

gcc: Gnu C Compiler

-g: include debugging information

-Wall: show all warnings

-o hi: specifies program name

If you do not specify a name
gcc -g -Wall hello.c

The executable will be called: a.out

9 CSE 303 - Winter 2010

Quick Hello World Explanation

  #include <stdio.h>

-  Directive to the C preprocessor (more later)

-  Finds file stdio.h, includes its entire content

-  stdio.h is a header file

-  stdio.h describes printf

  main is a function

-  Every C program begins executing at the function main

  \n is an escape sequence. Means newline.

10 CSE 303 - Winter 2010

C Functions

  A lot like Java methods but...

-  They are not part of a class

-  They are not associated with an object

-  No “this”

11 CSE 303 - Winter 2010

Address Space of a Unix Process

static data (globals)
(data segment)

code
(text segment)

stack
(dynamically allocated)

heap
(dynamically allocated)

0x00000000

0xFFFFFFFF

Address space

Address space
is just array of
8-bit bytes

Typical total
size is: 232

We will
assume that
integer is 4 bytes

A pointer is
just an index
into this array

12 CSE 303 - Winter 2010

About the Stack

  The call-stack (or just stack) has one “part” or
“frame” (also called activation record) for each
function call that has not yet returned.

  It holds

-  Room for local variables

-  The return address (index into code for what to
execute after the function is done)

  Hello World is not interesting to discuss the stack,
so let's try a different example...

13 CSE 303 - Winter 2010

Activation Record

Return address

Info where to write returned val

Argument 1

Argument 2

...

Local variable 1

Local variable 2

...

Note: each item on
the stack can be
many bytes in size

Local variables can
appear in any order
and may not be
contiguous

14

…

Content of Stack

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int integer2;

4 int sum;

5 integer1 = 10;

6 integer2 = 20;

7 sum = integer1 + integer2;

8 printf(“\nSum is %d”, sum);

9 return 0;

 }

XXX

Stack after line 4

XXX

XXX

integer1

integer2

sum

15 CSE 303 - Winter 2010

…

Content of Stack

10

Stack after line 5

XXX

XXX

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int integer2;

4 int sum;

5 integer1 = 10;

6 integer2 = 20;

7 sum = integer1 + integer2;

8 printf(“\nSum is %d”, sum);

9 return 0;

 }

integer1

integer2

sum

16 CSE 303 - Winter 2010

…

Content of Stack

10

Stack after line 6

20

XXX

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int integer2;

4 int sum;

5 integer1 = 10;

6 integer2 = 20;

7 sum = integer1 + integer2;

8 printf(“\nSum is %d”, sum);

9 return 0;

 }

integer1

integer2

sum

17 CSE 303 - Winter 2010

…

Content of Stack

10

Stack after line 7

20

30

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int integer2;

4 int sum;

5 integer1 = 10;

6 integer2 = 20;

7 sum = integer1 + integer2;

8 printf(“\nSum is %d”, sum);

9 return 0;

 }

integer1

integer2

sum

18 CSE 303 - Winter 2010

Content of Stack

10

Stack during
execution of printf

20

30

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int integer2;

4 int sum;

5 integer1 = 10;

6 integer2 = 20;

7 sum = integer1 + integer2;

8 printf(“\nSum is %d”, sum);

9 return 0;

 }

activation
record

for printf

integer1

integer2

sum

19 CSE 303 - Winter 2010

Introduction to Pointers

  Address of something is index into address-space
array: &integer1;

  Declaring a pointer to an integer

int *mypointer;

  Assigning an address to a pointer

mypointer = &integer1;

  Accessing data pointed to by pointer

*mypointer

20 CSE 303 - Winter 2010

Example with Pointers

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int *mypointer;

4 integer1 = 10;

5 mypointer = &integer1;

6 printf(“\nValue is %d”, integer1);

7 printf(“\nValue is %d”, *mypointer);

8 return 0;

 }

Stack after line 3

XX integer1

mypointer

21 CSE 303 - Winter 2010

Example with Pointers

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int *mypointer;

4 integer1 = 10;

5 mypointer = &integer1;

6 printf(“\nValue is %d”, integer1);

7 printf(“\nValue is %d”, *mypointer);

8 return 0;

 }

Stack after line 4

10 integer1

mypointer

22 CSE 303 - Winter 2010

Example with Pointers

10

Stack after line 5

integer1

mypointer

 #include <stdio.h>

1 int main() {

2 int integer1;

3 int *mypointer;

4 integer1 = 10;

5 mypointer = &integer1;

6 printf(“\nValue is %d”, integer1);

7 printf(“\nValue is %d”, *mypointer);

8 return 0;

 }

23 CSE 303 - Winter 2010

Example with Pointers

Stack after line 5
 #include <stdio.h>

1 int main() {

2 int integer1;

3 int *mypointer;

4 integer1 = 10;

5 mypointer = &integer1;

6 printf(“\nValue is %d”, integer1);

7 printf(“\nValue is %d”, *mypointer)

8 printf(“\nAddress is %p”, mypointer);

9 return 0;

 }

10 integer1
0xF4

mypointer 0xF0

24 CSE 303 - Winter 2010

Example with Pointers

Stack after line 5
 #include <stdio.h>

1 int main() {

2 int integer1;

3 int *mypointer;

4 integer1 = 10;

5 mypointer = &integer1;

6 printf(“\nValue is %d”, integer1);

7 printf(“\nValue is %d”, *mypointer)

8 printf(“\nAddress is %p”, mypointer);

9 return 0;

 }

10 integer1
0xF4

0xF4 mypointer 0xF0

25 CSE 303 - Winter 2010

Readings

  Programming in C

-  Note: skim sections that look familiar to you! The book
assumes NO programming background

-  Chapter 1: Introduction (you need to know that you
may encounter different versions of C)

-  Chapter 2: Fundamentals

  We will get back to compiling and linking later

-  Chapter 3: Compiling and Running

-  Chapter 11: Pointers (only pages 235-240)

26 CSE 303 - Winter 2010

