
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 6 – Utilities and Shell Wrap-Up

Outline

  What we have done so far

-  Linux model

-  Shell programming

-  Regular expression

  Plan for this lecture

-  Utility 1: sed

-  Utility 2: awk

-  Another useful utility: find (will not cover in class)

  Example: find . -name “*.txt”

-  Shell wrap-up and where to go from here

2 CSE 303 - Winter 2010

Automating File Editing

  We have learned how to automate various simple
tasks involving file manipulation and program
execution

  But how about:

-  Automating file editing

-  Simplifying repetitive edits to multiple files

  Typical example: search and replace in many files

-  Writing a conversion program (HW2, Problem 2)

  Sed: simple utility program that can help us

3 CSE 303 - Winter 2010

The Sed Editor

  Sed is a non interactive editor that interprets and
performs the actions in a script

  Sed is stream-oriented

-  Input comes from file or from stdin

-  Input flows through program

-  Output goes to stdout

4 CSE 303 - Winter 2010

How Sed Works

  Sed edits a file one line at the time

  Each line is copied into a pattern space

  All editing commands are then applied...

-  On the data in the pattern space

-  One after the other, in sequence

  Hence, original input does not change

  Possible to restrict edits to subset of lines

5 CSE 303 - Winter 2010

Command-Line Syntax

  Method 1: One-line syntax

sed [options] 'command' file(s)

sed -e 'command1' -e 'command2' file(s)

  Method 2: Scriptfile (not taught in this class)

sed [options] -f scriptfile file(s)

6 CSE 303 - Winter 2010

Search and Replace with Sed

  Simple most common use

sed 's/pattern/replacement/g' file

  Meaning: “Replace every (longest) substring that
matches pattern with replacement.”

  Common variations for search and replace

- Omit g: replaces only first match
- sed -n: suppresses normal output

 Add p where you normally put g to print
the lines that match pattern

7 CSE 303 - Winter 2010

More About Substitution

  Examples

sed 's/a/b/g' ex1.txt

sed -n 's/a/b/2p' ex1.txt

sed -e 's/a/b/g' -e 's/b/c/g' ex1.txt

  Additional examples (using regexps)

sed 's/.*Linux.*/\&:/' ex2.txt

sed 's/.*Linux \(.*\) .*/\1:/' ex2.txt

  Newline note: the \n is not in the matched text and
is (re)-added when printed

8 CSE 303 - Winter 2010

Editing Subset of Lines

  General syntax of sed commands

[address[,address]][!]command[arguments]

  Delete lines 3-5: sed '3,5 d' ex3.c

  Delete lines that do not say SAVE

sed '/SAVE/! d' ex3.c

  Delete all lines that start with //

sed '/\/\// d' ex3.c

  Remove all lines between /* and */

sed '/\/*/,/*\// d' ex3.c

9 CSE 303 - Winter 2010

Advanced Features

  Commands so far: substitute, print, delete

  Other commands (not shown in this class)

-  append, replace with block, insert, translate

-  branch to label

-  multi-line patterns

-  The hold space for fancy editing

  Example: copy and paste lines

  Honestly... if you need these, it might be better to
use Perl or Python

10 CSE 303 - Winter 2010

Awk

  Awk is a pattern-matching program for processing
text files composed of records separated by some
delineator

-  Default delineator: newline character

-  Records contain fields (default separator space)

  Usage

-  Generate a report from logs

-  Processing results from experiment

11 CSE 303 - Winter 2010

Command-Line Syntax

  Method 1: One-line syntax

awk [options] 'script' file(s)

  Useful variant

Change the field separator from space to c

awk -F c 'script' file(s)

  Method 2: Scriptfile (not taught in this class)

awk [options] -f scriptfile file(s)

12 CSE 303 - Winter 2010

Basic Functionality

  Script consists of pattern { procedure }

  Awk processes a file one record at the time

  For each record

-  Access fields with $1,...$n

-  Number of fields: NF

  Example: print only last and first fields

awk '{print $NF “ “ $1}' grades.txt

  Example: replace grades with average
awk '{print $1 “ “ ($2+$3)/2}' grades.txt

13 CSE 303 - Winter 2010

Using Patterns

  Can apply procedures only to records that match a
pattern. Examples:

awk '/Jane/{print $2}' grades.txt

awk '/Bob/, /Jane/ {print $0}' grades.txt

awk '$2 < 8 {print $0}' grades.txt

  BEGIN and END patterns serve to execute
operations before and after processing file

Example: compute class average on hw1
awk '{x+=$2; i++} END { print x/i}' grades.txt

  Can do pattern matching on fields as well

14 CSE 303 - Winter 2010

Advanced Features

  awk is quite a powerful scripting language

  Many features not covered in this class

-  Prog. language constructs: arrays, loops

-  Defining functions

-  Fancy printing with printf

-  Some math functions: cos(), rand()

  ... although once again, if you need all this, you
might want to use Perl or Python instead

15 CSE 303 - Winter 2010

Summary

  Bash scripts are powerful tools

  But they are also complex (intricate syntax)

  Lots of “tricks”

-  Typo in variable name creates a new variable: oops=7

-  Typo in variable use gives empty string: ls $oops

-  Omit subscript, get first element of array ${array}

-  Array-out-of-bounds

  On assignment, increases array size

  On use, returns the empty string

-  Be careful with spaces!

-  ... and many, many more gotchas
16 CSE 303 - Winter 2010

Bottom Line

  Never do something manually if writing a script
would save you time

-  Simple shell scripts can do powerful operations

-  Other utility programs help even further

  Never write a script if you need a large, robust
piece of software

  Some programming languages (Python or Perl) try
to give you the “best of both worlds”

  You now know two extremes that don't (Java and
bash)

17 CSE 303 - Winter 2010

Java vs Bash Programming

  Shell

(+) shorter, convenient file-access, file-tests, program
execution, pipes

(-) crazy quoting rules and ugly syntax

  Java

(+) cleaner, array-checking, type checking, etc.

(+) real data structures

(-) heavier weight

18 CSE 303 - Winter 2010

Where We Are and
Where We're Going

  We are done with Linux, shell, & utilities

-  You should now be comfortable performing simple
operations on Linux

-  After assignment 2, you should be comfortable writing
simple scripts and using simple utilities

  Where to go from here

-  Learn Python and/or Perl and/or Ruby

  Next time

-  Start to learn C

19 CSE 303 - Winter 2010

Python Example

#!/usr/bin/python
from sys import *
import Scientific.Statistics

inFile = open(argv[1])

Computes avg and stddev over all assignments
hw = []
for line in inFile.readlines():
 fields = line.split()
 for element in fields[1:]:
 hw.append(int(element))

print "Raw results: ", hw
avg=Scientific.Statistics.mean(hw)
stddev=Scientific.Statistics.standardDeviation(hw)
print "Avg: %.2f, stddev: %.2f" % (avg,stddev)

20 CSE 303 - Winter 2010

Readings

  Linux Pocket Guide

-  Section on More Powerful Manipulations (p80-81)

  Assignment 2 instructions point to online sed and
awk documentation

-  But you only need to know what we covered in lecture
today

-  Also: there will be no exam questions on awk

21 CSE 303 - Winter 2010

