
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 3 – I/O Redirection, Shell Scripts

CSE 303 - Winter 2010

Where We Are

Last two lectures

  A simple view of the system: files, users, processes, shell

  Lots of small useful programs; more to come

Today

  Introduction to emacs

  Input/Output redirection

  Combining commands

  Shell scripts

2 CSE 303 - Winter 2010

Introduction to emacs

  A programmable, extensible text editor, with lots of
goodies for programmers

  Not a full-blown IDE

  Much “heavier weight” than vi

3 CSE 303 - Winter 2010

Basic Emacs Commands

C-x C-f: open file

C-x 5 f: open file in new window

C-x C-s: save

C-x C-w: save as

C-x C-c: exit

C-x b: switch to another buffer

C-g: cancel partially typed command

4 CSE 303 - Winter 2010

Additional Useful Commands

  C-k: cut line

  C-y: paste line

  M-/: auto-complete (M means ESC key)

  C-x 2: split frame in two (C-x 0)

  Fancier copy-paste exists

  Many fancy commands: auto-indent, comment-
region or uncomment-region

  Color customization: “Customizing Faces”

5 CSE 303 - Winter 2010

Command Line Editing

  Can use a lot of same commands as emacs

  More info in the Linux Pocket Guide (p28)

  Note: you will not be evaluated on command line
editing. It's just for you.

6 CSE 303 - Winter 2010

Program Inputs and Outputs

  What we already know...

  Program takes array of strings as argument

-  Some of these arguments can be options

  Program returns an integer

-  Convention: 0 for success, non-zero for failure

-  Previous command's exist status is in $?

7 CSE 303 - Winter 2010

Program Inputs and Outputs

  The shell also sets up 3 “streams” of data for the
program

  stdin is an input stream with file descriptor 0

-  Standard input, default keyboard

  stdout is an output stream with file descriptor 1

-  Standard output, default shell window

  stderr is an output stream with file descriptor 2

-  Standard error, default shell window

-  Normally used for error messages

8 CSE 303 - Winter 2010

Input/Output Redirection

  Using special characters we can tell the shell to use
files instead of the keyboard and screen (online
Bash manual section 3.6)

  Redirect input: cmd < file

  Redirect output, overwrite file: cmd > file

  Redirect output, append file: cmd >> file

  Redirect error output: cmd 2> file

  Redirect both stdout, stderr: cmd &> file

9 CSE 303 - Winter 2010

I/O Redirection Examples

Sample commands (output not shown)

man ls > manual-page.txt

man idonotexit > manual-page.txt

man idonotexit 2> manual-page.txt

man ls > manual-page.txt 2>&1

man idonotexist > manual-page.txt 2>&1

man ls &> manual-page.txt

man ls >> manual-page.txt

history > my-history

10 CSE 303 - Winter 2010

Pipes

cmd1 | cmd2

  Change the stdout of cmd1 and the stdin of cmd2 to
be the same new stream

  Very powerful idea

-  Can combine many small programs into more complex
programs!

-  grep -–help | less

-  history | grep man

11 CSE 303 - Winter 2010

Combining Commands

  cmd1; cmd2 (sequence)

  cmd1 || cmd2 (or)

-  Using the integer return value (“exist status”)

-  Execution of commands stops after first success

  cmd1 && cmd2 (and)

  Execution of commands stops after first failure

  cmd1 `cmd2`

-  Use output of cmd2 as argument for cmd1

-  mkdir `whoami`

-  echo `date`

12 CSE 303 - Winter 2010

Next Step: Shell Scripts

  Series of individual commands combined into one
executable file form a shell script

  Shell is an interpreter for a programming language
of the same name

-  Variables

-  Some prog. constructs: conditional, loops, ...

-  Integer arithmetic

-  etc.

13 CSE 303 - Winter 2010

Writing a Script

  Make the first line exactly: #!/bin/bash

-  Indicates the command interpreter to be used

-  You need it as soon as you start using any bash-specific
constructs

  Type your other commands

  Example: file trivial.sh contains two lines

#!/bin/bash

echo “Hello world”

14 CSE 303 - Winter 2010

Executing a Script (3 methods)

  Start a new shell, execute within that shell

chmod u+x my_script.sh

./my_script.sh

  Start a new shell, execute within that shell

bash my_script.sh

  Execute within current shell

source my_script.sh
-  All variables defined in my_script.sh now defined in the

invoking shell (see variable.sh)

15 CSE 303 - Winter 2010

Example

  File trivial.sh contains two lines

#!/bin/bash

echo “Hello world”

  Now to execute the script

> chmod u+x trivial.sh

> ./trivial.sh
  Note that we used “./trivial.sh” instead of “trivial.sh” to

tell the shell to look in the current directory for trivial.sh

  Instead, we could also have modified our PATH
environment variable to include “.” (we will do that later)

16 CSE 303 - Winter 2010

Writing to stdout or stderr

  By default, output goes to stdout

#!/bin/bash

echo “Hello world”

  Can also send it to sderr

#!/bin/bash

echo “Hello world” >&2

17 CSE 303 - Winter 2010

Shell Variables

  Assignment using equals sign without spaces

-  i=42

-  q=”What is the answer”

  Preface a variable by a dollar sign ($) to reference
its value

-  echo $q $i

-  a=”The answer is $i”

  Optionally, enclose in braces

-  a2=”The answers are ${i}s”

18 CSE 303 - Winter 2010

Example 2

> chmod u+x variable.sh

> ./variable.sh

Hello World

Value of MYVAR is 3

> echo $MYVAR

 // nothing is output

19 CSE 303 - Winter 2010

Example 2 (b)

> source variable.sh

Hello World

Value of MYVAR is 3

> echo $MYVAR

3 // value 3 is output

20 CSE 303 - Winter 2010

More about Variables

  By default, variables only seen within the shell itself

-  Can delete a variable with unset

-  Check what variables “are set”: set

  To pass variables to other programs invoked within
the shell, use the export builtin

-  Exported variable becomes environment variable

-  Examples: inner.sh and outer.sh

  Several built-in environment variables

-  Example: PATH and HOME

-  Affect shell operation (can you remember how?)

Executing a Script Again

  Start a new shell, execute within that shell:

./my_script.sh

bash my_script.sh

  Execute within current shell

source my_script.sh
-  All variables defined in my_script.sh now defined in

the invoking shell

  Example: try the following

./outer.sh; echo $MY_VAR

source outer.sh; echo $MY_VAR

Accessing Arguments

  $i is the value of the ith argument

  $0 is the name of the program

  $# is the total number of arguments

  Testing the number of arguments received

if [$# -lt 1]

then
...

fi

23 CSE 303 - Winter 2010

More About Conditions

  test command, with [as special alias

-  Must put spaces around [and]

-  String tests (limited): [aabb = aabb]

-  Numeric tests:[1 -lt 5]

-  File tests (very common): [-e my-file]

-  Logic with -a or -o

  e.g., [-f $1 -o -d $1]

-  Logic with && or ||
  e.g., [-f $1] || [-d $1]

  More info: Linux Pocket Guide (pp 168-171)

24 CSE 303 - Winter 2010

Summary

  What we covered today

-  I/O redirection, pipes, combining commands

-  Introduction to writing scripts

  Arguments, variables, printing, manipulating files

-  Emacs

  Content of lectures 1 through 3 is enough to
complete first assignment

  You have all the information. Assignment 1 helps
you practice and review

25 CSE 303 - Winter 2010

Readings

  Class website: pointer to online Emacs manual is in
the “Resources” section

  Section from the Linux Pocket Guide

-  Programming with Shell Scripts (pages 166-178)

-  Selected bash features (pages 21-29)

26 CSE 303 - Winter 2010

