
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 27 – Final Exam Revision

Today

  Final review session!
  The final is not yet written, but you know roughly what it will cover

  We’ll discuss your questions about practice
problems
  Did you bring some?
  I also have a few

2 CSE 303 - Winter 2010

Final exam reminder

  Monday, March 15th @ 8:30-10:20, MGH 241

  Content: Lecture 7 and following
  There will be questions about tools: svn, debugger, makefiles

  CLOSED book and closed notes

  EXCEPT for two 8.5’’x11’’ pages
  7pt font or higher or written manually
  Both sides

3 CSE 303 - Winter 2010

What did we do in 303?

  Using Linux, bash scripting (lectures 1-6)
  Not on the final

  C (lectures 7-9, 12, 13, 15)

  C++ (lectures 17-20)

  Tools – svn, make, debugger, … (lectures 10, 11, 15, 16)

  Engineering issues – specs, testing, readability, concurrency
(lectures 22, 23, 25)

4 CSE 303 - Winter 2010

C = Pointers

  … sort of

  3 regions: stack, heap, static data
  Don’t mix them

  Never trust any pointer
  Memory leaks, dangling pointers, and more

  Arrays = pointers
  Arrays have no bounds checking or built-in length information
  Avoid buffer overflow – never trust any user-provided array or buffer

5 CSE 303 - Winter 2010

Bad pointer = crash! (we hope)

  Examine bad-pointer.c (from sample final 2)

  Why does it crash?

6 CSE 303 - Winter 2010

free() misused

Consider this binary tree struct:

struct Tree {

 int val;

 struct Tree *left, *right;

};

What’s wrong with this?

void free_tree_1(struct Tree *t) {

 if (t == NULL) return;

 free(t);

}

This example also in free-tree.c
7 CSE 303 - Winter 2010

free() misused, take 2

What about this?

void free_tree_2(struct Tree *t) {

 if (t == NULL) return;

 free(t);

 free_tree_2(t->left);

 free_tree_2(t->right);

}

8 CSE 303 - Winter 2010

Reminder:
struct Tree {
 int val;
 struct Tree *left, *right;
};

free() misused, take 3

How about now?

void free_tree_3(struct Tree *t) {

 if (t == NULL) return;

 free_tree_3(t->left);

 free_tree_3(t->right);

 free(t);

}

9 CSE 303 - Winter 2010

Reminder:
struct Tree {
 int val;
 struct Tree *left, *right;
};

C++ objects – like Java, but harder

  Creating objects on the stack vs. the heap
  Stack: object-valued variables, copying object state with copy ctor
  Heap: object pointer variables, only the pointer is copied

  Virtual functions
  Needed to invoke the method implementation appropriate to the

runtime class of the object

  Destructors must be virtual (unless you can guarantee that no one
ever holds a parent class pointer)

10 CSE 303 - Winter 2010

Stack vs. heap

  Examine stack-vs-heap.cc

  Why does this run Parent’s method?
Child ch;

Parent pa = ch;

pa.print();

  How about this?
Parent *ppa = &ch;

ppa->print();
11 CSE 303 - Winter 2010

Virtual vs. non-virtual

  Examine cows.h, cows-main.cc

  When we call fred’s methods, which version runs
– Bovine’s, or Cow’s?

  What about when we call the methods through
clarabell?

12 CSE 303 - Winter 2010

Debugging example

  Consider this C code that transforms a variable x:
/* x is the program input */

int x2 = f1(x);

int x3 = f2(x2);

int x4 = f3(x3);

int x5 = f4(x4);

  The output, x5, is not what you expect
  How would you use gdb to find the function that

produces the wrong output?

13 CSE 303 - Winter 2010

Debugging example – your answers

  How would you use gdb to find the function that
produces the wrong output?
  .

14 CSE 303 - Winter 2010

Makefiles

  Why use makefiles?
  .

  Why not write a bash script?
  .

15 CSE 303 - Winter 2010

Makefile example

Consider this makefile (in sample-makefile):
all: my_program

my_program: main.o alicelib.o boblib.o

 gcc –g main.o alicelib.o boblib.o -o my_program

%.o: %.c %.h

 gcc –g –c $< -o $@

We’ve just run make.
  What commands run if we delete main.o and rerun
make?

  What files can we delete so that only one command
is executed when rerunning make?

16 CSE 303 - Winter 2010

Version control

  How can you share files in a team project?

  What makes version control a good way to share?

  What shouldn’t you put in version control?

17 CSE 303 - Winter 2010

Writing a specification

How can we improve on this spec?
  .

18 CSE 303 - Winter 2010

A vague specification:
/** Compute number of times word appears in a file. */
int count_occurrences (char *filename, char *word);

Writing a specification, continued

  More ideas?

19 CSE 303 - Winter 2010

Reminder:
/** Compute number of times word appears in a file. */
int count_occurrences (char *filename, char *word);

Testing example

Give an example equivalence class of test cases.
  Example: cases with word == NULL
  .

20 CSE 303 - Winter 2010

Using the previous example:
/** Compute number of times word appears in a file. */
int count_occurrences (char *filename, char *word);

Testing example, continued

  More ideas?

21 CSE 303 - Winter 2010

Reminder:
/** Compute number of times word appears in a file. */
int count_occurrences (char *filename, char *word);

A bit of concurrency

Example code:

int total = 0; // global variable

void inc_total (int incr) {

 int new_total = total + incr;

 total = new_total;

}

  Multiple threads call inc_total, read total directly

  The final value of total keeps changing; it even varies
between executions with the same input

  Why is this happening?

22 CSE 303 - Winter 2010

A bit of concurrency, continued

Reminder:

int total = 0; // global variable

void inc_total (int incr) {

 int new_total = total + incr;

 total = new_total;

}

  How can we fix the problem?

23 CSE 303 - Winter 2010

