
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 26 – Threads and
Concurrency Control

Final Exam

  Monday, March 15th @ 8:30-10:20, MGH 241

  Content: Lecture 7 and following

  There will be questions about tools: svn, debugger, makefiles

  CLOSED book and closed notes

  EXCEPT for two 8.5’’x11’’ pages

  7pt font or higher or written manually

  Both sides

2 CSE 303 - Winter 2010

Motivation for Concurrency

  Imagine a software system such as a web server or a
database management system (DBMS)

  A Web server works as follows

-  Client requests a page (URL)

-  Web server locates and reads page from disk

-  Web server sends content of page back to client

  A DBMS works as follows

-  Client submits a query

-  DBMS reads from disk the data that satisfies the query

-  DBMS sends the data back to the client

3 CSE 303 - Winter 2010

How to Achieve High Performance?

  Many clients submit requests at the same time

  Approach 1: put requests in a queue and serve one request at
the time

-  But... reading data from disk is very slow

-  And while reading from disk, the CPU is idle

-  This is very slow, very inefficient. Can we do better?

  Approach 2: serve multiple requests simultaneously

-  While reading data from disk for one client

-  Start parsing request for second client

-  Send results from previous request to third client

-  Use multiple cores if available

-  All resources are fully utilized. This is much more efficient

4 CSE 303 - Winter 2010

Enabling Concurrency

  How to serve many requests at the same time?

  Design 1: Launch one process per client request

-  One web server process or one database system process

-  Each process has its own address space with a stack, a heap, code,
and global variables

-  OS takes turn running processes on processor(s)

-  Processes can communicate with each other (in our example they
communicate through the filesystem)

-  This approach is quite “heavyweight”

5 CSE 303 - Winter 2010

Enabling Concurrency

  How to serve many requests at the same time?

  Design 2: Launch one thread per client request

-  Launch a single process with multiple threads

-  Each thread has its own stack

-  A scheduler runs threads one-or-more at a time

-  This time, threads share an address space: same heap and same
global variables

-  This approach is more “lightweight”

6 CSE 303 - Winter 2010

Address Space of a Process

static data (globals)
(data segment)

code
(text segment)

stack

heap

One process with one thread

static data (globals)
(data segment)

code
(text segment)

stack for thread 1

heap

One process with two threads

stack for thread 2

Plan for Today

  Today, we will talk about writing programs with threads

-  What can go wrong?

-  How to avoid problems?

  Concurrency is a difficult concept

-  Focus on the key challenges and solutions

-  You do not need to learn the programming syntax

  In later classes

-  You will learn more about the tradeoffs between threads and
processes (and the history)

-  You will learn about design issues regarding how to leverage
concurrency (these are hard systems issues)

8 CSE 303 - Winter 2010

Pthreads

  In Java, syntax for threads is quite easy

-  You should learn it on your own

  In C, threads are messier and often not portable

  For UNIX systems, there exists a standardized C language
threads programming interface

  Implementations that adhere to this standard are referred to
as POSIX threads or Pthreads

  We will use Pthreads in our examples but

-  Concepts and principles are language independent

  Our first example: bank.cc

9 CSE 303 - Winter 2010

Creating a New Thread

  Initially, program comprises a single, default thread

  Other threads must be created explicitly

  Function: pthread_create

-  Creates a new thread and makes it executable

  Example from bank.cc

pthread_t spender_thread;

pthread_create(&spender_thread, // identifier

 NULL, // attributes

 spender, // start function

 (void*)p_nb_transfers // arguments

);

10 CSE 303 - Winter 2010

Creating a New Thread

  Arguments to pthread_create

-  thread: opaque, unique id for the new thread returned by the subroutine

-  attr: serves to specify thread attributes or NULL for the default values
(we will use NULL)

-  Example attribute is the thread max stack size

-  start_routine: the C function that the thread will execute once it is
created

-  arg: a single argument that may be passed to start_routine.

11 CSE 303 - Winter 2010

Terminating a Thread

  If process terminates, all threads terminate

  Can also terminate a single thread

-  By returning from start_routine

-  By calling pthread_exit explicitly inside the thread

-  By calling pthread_cancel from outside the thread

  It is possible to wait for a thread to terminate

-  By calling pthread_join

  Example bank.cc

12 CSE 303 - Winter 2010

Race Conditions

  Threads communicate through shared memory

  This makes communication nice and easy BUT

  This leads to a problem known as a race condition

-  Two threads can access the same memory at the same time, and at
least one access is a write

  Example: in bank.cc, simultaneous transfers by the two
threads can cause money to disappear

Thread 1
int a = x
a = 2*a

x = a

Thread 2
int a = x

a = 2*a

x = a

Value of X
10

20
20

13 CSE 303 - Winter 2010

Locking

  To avoid race conditions, typical solution is to use locks

  Lock is either available or held by a thread

  Before modifying a shared data item

-  A thread tries to acquire a lock

-  If lock is available, thread acquires and holds lock

-  Otherwise, thread blocks until lock is available

  After the modification, the thread releases the lock

-  Lock becomes available again

14 CSE 303 - Winter 2010

Locking Example

Thread 1
Lock X
int a = x
a = 2*a
x = a
Unlock X

Thread 2
Lock X -> Block

Lock X
int a = x
a = 2*a
x = a
Unlock X

Value of X
10

20

40

Pthread Mutexes

  With PThreads, special mutex variables are used for
locking. Mutex is an abbreviation for "mutual exclusion"

  Example from bank-fixed.cc:

pthread_mutex_t mutex_bank;
pthread_mutex_init(&mutex_bank, NULL);
 ...

pthread_mutex_lock (&mutex_bank);
// perform operations on bank accounts
// ...
pthread_mutex_unlock (&mutex_bank);
//...
pthread_mutex_destroy(&mutex_bank);

Only need to do once

For each access to data

When mutex is no longer
needed

16 CSE 303 - Winter 2010

Pthread Mutexes

  Note: with Pthreads, when multiple threads are waiting for
the same lock, there is no guarantee which thread will
acquire the lock next

  Notice the performance decrease once we added locks

17 CSE 303 - Winter 2010

More About Race Conditions

  Any one of the following is sufficient to avoid races

-  Keep data thread-local (keep data reachable only by one thread or at least
accessed only by one thread)

-  Keep data read-only (make your objects immutable)

-  Use locks consistently (always acquire a lock before accessing an object)

  Easy to forget about any of these and get bugs that are very
hard to reproduce

18 CSE 303 - Winter 2010

Deadlocks

  Locks reduce concurrency

-  Because threads must wait for each other

  To maximize concurrency, want to use 1 lock/data item

-  Threads that access different data items can then still run in parallel
by acquiring different locks

  But existence of multiple locks can cause deadlocks:

Thread 1
Lock X

Lock Y -> Block

Deadlock

Thread 2

Lock Y

Lock X -> Block
Deadlock

19 CSE 303 - Winter 2010

Avoiding Deadlocks

  Ensure that all threads acquire locks in the same order

  Deadlock examples:

-  bank-deadlock.cc and bank-nodeadlock.cc

  Famous deadlock example: dinning philosophers

  Can also use deadlock detection (e.g. database systems)

  Time-outs

  Wait-for graphs

20 CSE 303 - Winter 2010

Summary

  Multithreaded programming can improve performance

-  Helps keep resources busy

-  Can take advantage of existence of multiple processors

  Multithreaded programming is difficult

-  There are multiple stacks in one address space

-  There are potential races and deadlocks

-  Need to use locks carefully to avoid these problems

  A lot more to this topic than we have covered today

21 CSE 303 - Winter 2010

