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Final Exam 

  Monday, March 15th @ 8:30-10:20, MGH 241 

  Content: Lecture 7 and following 

  There will be questions about tools: svn, debugger, makefiles 

  CLOSED book and closed notes  

  EXCEPT for two 8.5’’x11’’ pages 

  7pt font or higher or written manually 

  Both sides 
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Motivation for Concurrency 

  Imagine a software system such as a web server or a 
database management system (DBMS) 

  A Web server works as follows 

-  Client requests a page (URL) 

-  Web server locates and reads page from disk 

-  Web server sends content of page back to client 

  A DBMS works as follows 

-  Client submits a query 

-  DBMS reads from disk the data that satisfies the query 

-  DBMS sends the data back to the client 
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How to Achieve High Performance? 

  Many clients submit requests at the same time 

  Approach 1: put requests in a queue and serve one request at 
the time 

-  But... reading data from disk is very slow 

-  And while reading from disk, the CPU is idle 

-  This is very slow, very inefficient. Can we do better? 

  Approach 2: serve multiple requests simultaneously 

-  While reading data from disk for one client 

-  Start parsing request for second client 

-  Send results from previous request to third client 

-  Use multiple cores if available 

-  All resources are fully utilized. This is much more efficient 
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Enabling Concurrency 

  How to serve many requests at the same time? 

  Design 1: Launch one process per client request 

-  One web server process or one database system process 

-  Each process has its own address space with a stack, a heap, code, 
and global variables 

-  OS takes turn running processes on processor(s) 

-  Processes can communicate with each other (in our example they 
communicate through the filesystem) 

-  This approach is quite “heavyweight” 
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Enabling Concurrency 

  How to serve many requests at the same time? 

  Design 2: Launch one thread per client request 

-  Launch a single process with multiple threads 

-  Each thread has its own stack 

-  A scheduler runs threads one-or-more at a time 

-  This time, threads share an address space: same heap and same 
global variables 

-  This approach is more “lightweight” 
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Address Space of a Process 

static data (globals)  
(data segment) 

code  
(text segment) 

stack 

heap 

One process with one thread 

static data (globals)  
(data segment) 

code  
(text segment) 

stack for thread 1  

heap 

One process with two threads 

stack for thread 2  



Plan for Today 

  Today, we will talk about writing programs with threads 

-  What can go wrong? 

-  How to avoid problems? 

  Concurrency is a difficult concept 

-  Focus on the key challenges and solutions 

-  You do not need to learn the programming syntax 

  In later classes 

-  You will learn more about the tradeoffs between threads and 
processes (and the history) 

-  You will learn about design issues regarding how to leverage 
concurrency (these are hard systems issues) 
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Pthreads 

  In Java, syntax for threads is quite easy 

-  You should learn it on your own 

  In C, threads are messier and often not portable 

  For UNIX systems, there exists a standardized C language 
threads programming interface 

  Implementations that adhere to this standard are referred to 
as POSIX threads or Pthreads 

  We will use Pthreads in our examples but 

-  Concepts and principles are language independent 

  Our first example: bank.cc 
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Creating a New Thread 

  Initially, program comprises a single, default thread  

  Other threads must be created explicitly 

  Function: pthread_create  

-  Creates a new thread and makes it executable 

  Example from bank.cc 

pthread_t spender_thread; 

pthread_create(&spender_thread, // identifier 

               NULL,            // attributes 

               spender,         // start function 

               (void*)p_nb_transfers // arguments 

               ); 
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Creating a New Thread 

  Arguments to pthread_create 

-  thread: opaque, unique id for the new thread returned by the subroutine 

-  attr: serves to specify thread attributes or NULL for the default values 
(we will use NULL) 

-  Example attribute is the thread max stack size 

-  start_routine: the C function that the thread will execute once it is 
created 

-  arg: a single argument that may be passed to start_routine.  
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Terminating a Thread 

  If process terminates, all threads terminate 

  Can also terminate a single thread 

-  By returning from start_routine 

-  By calling pthread_exit explicitly inside the thread 

-  By calling pthread_cancel from outside the thread 

  It is possible to wait for a thread to terminate 

-  By calling pthread_join 

  Example bank.cc 
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Race Conditions 

  Threads communicate through shared memory 

  This makes communication nice and easy BUT 

  This leads to a problem known as a race condition 

-  Two threads can access the same memory at the same time, and at 
least one access is a write 

  Example: in bank.cc, simultaneous transfers by the two 
threads can cause money to disappear 

Thread 1 
int a = x 
a = 2*a 

x = a 

Thread 2 
int a = x 

a = 2*a 

x = a 

Value of X 
10 

20 
20 
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Locking 

  To avoid race conditions, typical solution is to use locks 

  Lock is either available or held by a thread 

  Before modifying a shared data item 

-  A thread tries to acquire a lock 

-  If lock is available, thread acquires and holds lock 

-  Otherwise, thread blocks until lock is available 

  After the modification, the thread releases the lock 

-  Lock becomes available again 

14 CSE 303 - Winter 2010 



Locking Example 

Thread 1 
Lock X 
int a = x 
a = 2*a 
x = a 
Unlock X 

Thread 2 
Lock X -> Block 

Lock X 
int a = x 
a = 2*a 
x = a 
Unlock X 

Value of X 
10 

20 

40 



Pthread Mutexes 

  With PThreads, special mutex variables are used for 
locking. Mutex is an abbreviation for "mutual exclusion" 

  Example from bank-fixed.cc: 

pthread_mutex_t mutex_bank; 
pthread_mutex_init(&mutex_bank, NULL); 
 ... 

pthread_mutex_lock (&mutex_bank); 
// perform operations on bank accounts 
// ... 
pthread_mutex_unlock (&mutex_bank); 
//... 
pthread_mutex_destroy(&mutex_bank); 

Only need to do once 

For each access to data 

When mutex is no longer 
needed 
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Pthread Mutexes 

  Note: with Pthreads, when multiple threads are waiting for 
the same lock, there is no guarantee which thread will 
acquire the lock next 

  Notice the performance decrease once we added locks 
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More About Race Conditions 

  Any one of the following is sufficient to avoid races 

-  Keep data thread-local (keep data reachable only by one thread or at least 
accessed only by one thread) 

-  Keep data read-only (make your objects immutable) 

-  Use locks consistently (always acquire a lock before accessing an object) 

  Easy to forget about any of these and get bugs that are very 
hard to reproduce 
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Deadlocks 

  Locks reduce concurrency 

-  Because threads must wait for each other 

  To maximize concurrency, want to use 1 lock/data item 

-  Threads that access different data items can then still run in parallel 
by acquiring different locks 

  But existence of multiple locks can cause deadlocks: 

Thread 1 
Lock X 

Lock Y -> Block 

Deadlock 

Thread 2 

Lock Y 

Lock X -> Block 
Deadlock 
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Avoiding Deadlocks 

  Ensure that all threads acquire locks in the same order 

  Deadlock examples: 

-  bank-deadlock.cc and bank-nodeadlock.cc 

  Famous deadlock example: dinning philosophers 

  Can also use deadlock detection (e.g. database systems) 

  Time-outs 

  Wait-for graphs 
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Summary 

  Multithreaded programming can improve performance 

-  Helps keep resources busy 

-  Can take advantage of existence of multiple processors 

  Multithreaded programming is difficult 

-  There are multiple stacks in one address space 

-  There are potential races and deadlocks 

-  Need to use locks carefully to avoid these problems 

  A lot more to this topic than we have covered today 
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