
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Spring 2010

Lecture 23 - C/C++: const keyword
Software Eng: Defensive Programming

Where We Are

  One goal of the class is to help you become more
mature software developers

  Last time, we talked about

-  Software development process

-  Writing specifications

-  Testing

  Today we will talk about the implementation

2 CSE 303 - Winter 2010

Good Software
Development Practices

  Writing readable code

-  It's not just about the comments

-  Want whole program logic to be easy to follow

  Writing code that is easy to maintain

-  Well-defined components with clear interfaces

-  Loose coupling between components

  Writing robust code that

-  Gracefully reacts to unforeseeable usage

-  Gracefully handles various error conditions

-  Software engineering principle: encapsulation

3 CSE 303 - Winter 2010

Readable Code: BAD Example

  What does the following code snippet do?

int main(int argc, char** argv) {
 // ...
 int i[argc-1];
 for (int j=0; j<argc-1; i[j]=atoi(argv[++j]));
 cout << ((argc-1) % 2 ? 'y' : 'n') << endl;
 // ...
}

4 CSE 303 - Winter 2010

Readable Code: GOOD Example

int main(int argc, char** argv) {
 // ...
 int size = argc - 1;
 int numbers[size];
 for (int i = 0; i < size; i++) {
 numbers[i] = atoi(argv[i+1]);
 }

 if ((size % 2) == 0) {
 cout << "Number of elements is even" << endl;
 } else {
 cout << "Number of elements is odd" << endl;
 }
 // ...
} 5 CSE 303 - Winter 2010

Why Is Readability Important?

  Your code is part of your documentation

-  Others need to understand it

-  You need to understand it, even after a while

  Maintenance

  Fixing bugs is easier when code is readable

  Adding new features is also easier

  Clear code helps clear thinking

  If your code is unreadable, it will quickly end-up in
the garbage

6 CSE 303 - Winter 2010

How to Improve Code Readability

  It's not just about the comments

  Use good levels of abstraction

  Each function should have a single specific goal

  The algorithm used by the function should be clear

  Use small helper functions to hide details

  Make program logic easy to follow

  Some small things that also help

-  Write clear expressions and statements

-  Good variable names and indentation

-  Follow a coding standard

7 CSE 303 - Winter 2010

Good Software
Development Practices

  Writing readable code

-  It's not just about the comments

-  Want whole program logic to be easy to follow

  Writing code that is easy to maintain

-  Well-defined components with clear interfaces

-  Loose coupling between components

  Writing robust code that

-  Gracefully reacts to unforeseeable usage

-  Gracefully handles various error conditions

-  Software engineering principle: encapsulation

8 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
9 CSE 303 - Winter 2010

Check Your Function Inputs

  Famous last words:

-  “No one will pass null as argument. Why would they?”

-  “No one will ever enter a name longer than X”

-  “I will first get it to work. I will add all the error handling
later, when I have time”

  Golden rules

-  Assume callers do not know what they are doing

-  Check that inputs are valid!

-  Check preconditions if possible

10 CSE 303 - Winter 2010

Check Your Function Inputs

  Example from StringList.cc

  Always check inputs! Handle errors as per specs

  Check preconditions if possible

  For preconditions, assert is very convenient

void StringList::insert (cond char *original) {

 // CHECK: Checking all inputs
 // CHECK: Checking preconditions
 assert(original);
 assert(strlen(original) < BUF_SIZE);
 ...
}

11 CSE 303 - Winter 2010

Check Buffer Boundaries

  Every time you manipulate an array or string

-  Make sure you are staying within bounds

  Example from StringList.cc

void StringList::insert(const char* original) {

 Node node = new Node();
 ...
 strncpy(node->original,original,BUF_SIZE);

 ...
}

12 CSE 303 - Winter 2010

Check For Errors

  Every time you invoke a function

  Check if the function can return an error

  Read the specification for that function

  One reason why good specifications are important

  Assume it will sometimes return that error

  Handle the error properly

  Many examples

  Opening a file can fail (fopen)

  Reading data from a stream can fail (fscanf)

  Etc.

13 CSE 303 - Winter 2010

Check For Errors

  Example from StringList.cc

void StringList::insert (const char *original) {

 Node *node = new Node();

 if (!node) {

 cerr << "Out of memory\n";

 return;

 }

 …

}

14 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
15 CSE 303 - Winter 2010

Encapsulation

  Key concept in object-oriented programming

  A class encapsulates attributes and functions

-  Classes correspond to “abstract data types”

-  A class “exports” an interface

-  All communication goes through interface

-  No one is allowed to manipulate data directly

  Information hiding

  No one should know about implementation nor representation (the
internal data structures of the class)

  Example: StringList class

  User of the class does not know how list is implemented

16 CSE 303 - Winter 2010

Check Invariants

  Internal class representation often has some
invariants: i.e., properties that always hold

  Example of invariant:

-  “Linked list is always in sorted order”

  Add a function: check_list

-  Returns true if function is in order

-  Returns false otherwise

  Inside your functions: insert and delete

-  Add: assert(check_list(*head));

  This practice helps early bug detection

17 CSE 303 - Winter 2010

Information Hiding Common Error

  It is easy to break encapsulation by accident

  Typical problem: caller and callee have pointers to
the same object

  Caller can change internal representation of the
callee! Very BAD!

  A very common source of errors

18 CSE 303 - Winter 2010

Information Hiding Common Error

  Example 1: Error when handling inputs

void StringList::insert(const char *original) {

 Node *node = new Node();
 ...
 node->original = original;
}

•  In the example above, the caller and callee point to the same
array of characters in memory. This is bad.

19 CSE 303 - Winter 2010

Information Hiding Common Error

  Example 2: Error when handling outputs

Const Node*
StringList::lookup (const char *original) {

 Node *element = _head;

 // Iterate through list and find string
 // …
 return element;
}

•  In this example, the caller and callee point to the same Node
element in memory. This is bad even with a const qualifier

20 CSE 303 - Winter 2010

Information Hiding Common Error

  In the lookup example, caller cannot change the element
returned: GOOD

  However, caller can still free the object: BAD

  Also, caller has a pointer to an element that someone else
can free by removing the string from the list: BAD

21 CSE 303 - Winter 2010

Information Hiding Solutions

  Solution 1: Copying

-  Copy all inputs before integrating them into internal
representation

-  Return copies of internal elements

  Solution 2: Immutable objects

-  Immutable objects can never be changed

-  But watch-out for new/delete

  Solution 3: Using the const type qualifier

-  Good idea, but be careful

-  Once again, watch-out for new/delete

22 CSE 303 - Winter 2010

The “const” Type Qualifier

  Available in C and in C++

  Enforced at compile time

  Example 1: Using const with inputs

void StringList::insert(const char *original) {

 // Following causes compile-time error

 original[0] = ...;

}

23 CSE 303 - Winter 2010

The “const” Type Qualifier

  Example 2: Using const with return values

const Node*
StringList::lookup (const char *original) {

 Node *element = head;

 // ...
 return element;
}

// Caller cannot change the element returned
const Node *element = list.lookup(my_string);
// And following causes compile time error
element->original[0] = 'a';

•  BUT, caller can still delete object, so we would still want to make a copy
instead of returning a const pointer

24 CSE 303 - Winter 2010

“const” Can Get Very Confusing

  Non-constant pointer to constant data

-  const char *ptr

-  Cannot change the content of these locations

-  Can make ptr point to different memory locations

  Constant pointer to non-constant data

-  char * const ptr = ...;

-  Cannot change what ptr is pointing to

-  Can change the content of pointer to location

  Can also have const pointer to const data and a
non-const pointer to non-const data

25 CSE 303 - Winter 2010

Basic Principle

  Principle of least privilege

-  Give a function enough access to data to accomplish
task. Not more.

  Note: in C++, you can declare a member function
inside a class to be const

-  Means that function is not allowed to modify any data
members

-  Simply specify keyword const at end of prototype

void print() const;

bool is_empty() const;

26 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
27 CSE 303 - Winter 2010

Towards Security

  Robust software can protect against

-  Buffer overflow attacks

-  Crashes caused by invalid inputs

  But security is much harder than that

  Example 1: denial of service attack

-  Send huge numbers of requests to a server

-  For example, keep adding elements to list

  Example 2: timing attack

-  Measure time system takes to fulfill a request

-  Example: timing.c

28 CSE 303 - Winter 2010

Summary

  You now know some basic software engineering

-  Software development process

  Main steps involved in building a software system

-  Specifications

  Why we need them and how to write simple ones

  We talked about informal specifications only

-  Testing: why and how

-  Writing robust and readable code

  There is much more to software engineering

  But what you know should help in future classes

29 CSE 303 - Winter 2010

