
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Spring 2010

Lecture 23 - C/C++: const keyword
Software Eng: Defensive Programming

Where We Are

  One goal of the class is to help you become more
mature software developers

  Last time, we talked about

-  Software development process

-  Writing specifications

-  Testing

  Today we will talk about the implementation

2 CSE 303 - Winter 2010

Good Software
Development Practices

  Writing readable code

-  It's not just about the comments

-  Want whole program logic to be easy to follow

  Writing code that is easy to maintain

-  Well-defined components with clear interfaces

-  Loose coupling between components

  Writing robust code that

-  Gracefully reacts to unforeseeable usage

-  Gracefully handles various error conditions

-  Software engineering principle: encapsulation

3 CSE 303 - Winter 2010

Readable Code: BAD Example

  What does the following code snippet do?

int main(int argc, char** argv) {
 // ...
 int i[argc-1];
 for (int j=0; j<argc-1; i[j]=atoi(argv[++j]));
 cout << ((argc-1) % 2 ? 'y' : 'n') << endl;
 // ...
}

4 CSE 303 - Winter 2010

Readable Code: GOOD Example

int main(int argc, char** argv) {
 // ...
 int size = argc - 1;
 int numbers[size];
 for (int i = 0; i < size; i++) {
 numbers[i] = atoi(argv[i+1]);
 }

 if ((size % 2) == 0) {
 cout << "Number of elements is even" << endl;
 } else {
 cout << "Number of elements is odd" << endl;
 }
 // ...
} 5 CSE 303 - Winter 2010

Why Is Readability Important?

  Your code is part of your documentation

-  Others need to understand it

-  You need to understand it, even after a while

  Maintenance

  Fixing bugs is easier when code is readable

  Adding new features is also easier

  Clear code helps clear thinking

  If your code is unreadable, it will quickly end-up in
the garbage

6 CSE 303 - Winter 2010

How to Improve Code Readability

  It's not just about the comments

  Use good levels of abstraction

  Each function should have a single specific goal

  The algorithm used by the function should be clear

  Use small helper functions to hide details

  Make program logic easy to follow

  Some small things that also help

-  Write clear expressions and statements

-  Good variable names and indentation

-  Follow a coding standard

7 CSE 303 - Winter 2010

Good Software
Development Practices

  Writing readable code

-  It's not just about the comments

-  Want whole program logic to be easy to follow

  Writing code that is easy to maintain

-  Well-defined components with clear interfaces

-  Loose coupling between components

  Writing robust code that

-  Gracefully reacts to unforeseeable usage

-  Gracefully handles various error conditions

-  Software engineering principle: encapsulation

8 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
9 CSE 303 - Winter 2010

Check Your Function Inputs

  Famous last words:

-  “No one will pass null as argument. Why would they?”

-  “No one will ever enter a name longer than X”

-  “I will first get it to work. I will add all the error handling
later, when I have time”

  Golden rules

-  Assume callers do not know what they are doing

-  Check that inputs are valid!

-  Check preconditions if possible

10 CSE 303 - Winter 2010

Check Your Function Inputs

  Example from StringList.cc

  Always check inputs! Handle errors as per specs

  Check preconditions if possible

  For preconditions, assert is very convenient

void StringList::insert (cond char *original) {

 // CHECK: Checking all inputs
 // CHECK: Checking preconditions
 assert(original);
 assert(strlen(original) < BUF_SIZE);
 ...
}

11 CSE 303 - Winter 2010

Check Buffer Boundaries

  Every time you manipulate an array or string

-  Make sure you are staying within bounds

  Example from StringList.cc

void StringList::insert(const char* original) {

 Node node = new Node();
 ...
 strncpy(node->original,original,BUF_SIZE);

 ...
}

12 CSE 303 - Winter 2010

Check For Errors

  Every time you invoke a function

  Check if the function can return an error

  Read the specification for that function

  One reason why good specifications are important

  Assume it will sometimes return that error

  Handle the error properly

  Many examples

  Opening a file can fail (fopen)

  Reading data from a stream can fail (fscanf)

  Etc.

13 CSE 303 - Winter 2010

Check For Errors

  Example from StringList.cc

void StringList::insert (const char *original) {

 Node *node = new Node();

 if (!node) {

 cerr << "Out of memory\n";

 return;

 }

 …

}

14 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
15 CSE 303 - Winter 2010

Encapsulation

  Key concept in object-oriented programming

  A class encapsulates attributes and functions

-  Classes correspond to “abstract data types”

-  A class “exports” an interface

-  All communication goes through interface

-  No one is allowed to manipulate data directly

  Information hiding

  No one should know about implementation nor representation (the
internal data structures of the class)

  Example: StringList class

  User of the class does not know how list is implemented

16 CSE 303 - Winter 2010

Check Invariants

  Internal class representation often has some
invariants: i.e., properties that always hold

  Example of invariant:

-  “Linked list is always in sorted order”

  Add a function: check_list

-  Returns true if function is in order

-  Returns false otherwise

  Inside your functions: insert and delete

-  Add: assert(check_list(*head));

  This practice helps early bug detection

17 CSE 303 - Winter 2010

Information Hiding Common Error

  It is easy to break encapsulation by accident

  Typical problem: caller and callee have pointers to
the same object

  Caller can change internal representation of the
callee! Very BAD!

  A very common source of errors

18 CSE 303 - Winter 2010

Information Hiding Common Error

  Example 1: Error when handling inputs

void StringList::insert(const char *original) {

 Node *node = new Node();
 ...
 node->original = original;
}

•  In the example above, the caller and callee point to the same
array of characters in memory. This is bad.

19 CSE 303 - Winter 2010

Information Hiding Common Error

  Example 2: Error when handling outputs

Const Node*
StringList::lookup (const char *original) {

 Node *element = _head;

 // Iterate through list and find string
 // …
 return element;
}

•  In this example, the caller and callee point to the same Node
element in memory. This is bad even with a const qualifier

20 CSE 303 - Winter 2010

Information Hiding Common Error

  In the lookup example, caller cannot change the element
returned: GOOD

  However, caller can still free the object: BAD

  Also, caller has a pointer to an element that someone else
can free by removing the string from the list: BAD

21 CSE 303 - Winter 2010

Information Hiding Solutions

  Solution 1: Copying

-  Copy all inputs before integrating them into internal
representation

-  Return copies of internal elements

  Solution 2: Immutable objects

-  Immutable objects can never be changed

-  But watch-out for new/delete

  Solution 3: Using the const type qualifier

-  Good idea, but be careful

-  Once again, watch-out for new/delete

22 CSE 303 - Winter 2010

The “const” Type Qualifier

  Available in C and in C++

  Enforced at compile time

  Example 1: Using const with inputs

void StringList::insert(const char *original) {

 // Following causes compile-time error

 original[0] = ...;

}

23 CSE 303 - Winter 2010

The “const” Type Qualifier

  Example 2: Using const with return values

const Node*
StringList::lookup (const char *original) {

 Node *element = head;

 // ...
 return element;
}

// Caller cannot change the element returned
const Node *element = list.lookup(my_string);
// And following causes compile time error
element->original[0] = 'a';

•  BUT, caller can still delete object, so we would still want to make a copy
instead of returning a const pointer

24 CSE 303 - Winter 2010

“const” Can Get Very Confusing

  Non-constant pointer to constant data

-  const char *ptr

-  Cannot change the content of these locations

-  Can make ptr point to different memory locations

  Constant pointer to non-constant data

-  char * const ptr = ...;

-  Cannot change what ptr is pointing to

-  Can change the content of pointer to location

  Can also have const pointer to const data and a
non-const pointer to non-const data

25 CSE 303 - Winter 2010

Basic Principle

  Principle of least privilege

-  Give a function enough access to data to accomplish
task. Not more.

  Note: in C++, you can declare a member function
inside a class to be const

-  Means that function is not allowed to modify any data
members

-  Simply specify keyword const at end of prototype

void print() const;

bool is_empty() const;

26 CSE 303 - Winter 2010

Writing Robust Code

  Defensive programming

-  Check your function inputs

-  Check buffer boundaries

-  Check for errors, catch and handle exceptions

-  Enforce encapsulation (data hiding)

  Important software engineering principle

  Other general practices

-  Strive for simplicity, perform code reviews

-  Check invariants (helps testing/debugging)
-  Example: list is always in sorted order

-  Reuse well-tested code: standard libraries
27 CSE 303 - Winter 2010

Towards Security

  Robust software can protect against

-  Buffer overflow attacks

-  Crashes caused by invalid inputs

  But security is much harder than that

  Example 1: denial of service attack

-  Send huge numbers of requests to a server

-  For example, keep adding elements to list

  Example 2: timing attack

-  Measure time system takes to fulfill a request

-  Example: timing.c

28 CSE 303 - Winter 2010

Summary

  You now know some basic software engineering

-  Software development process

  Main steps involved in building a software system

-  Specifications

  Why we need them and how to write simple ones

  We talked about informal specifications only

-  Testing: why and how

-  Writing robust and readable code

  There is much more to software engineering

  But what you know should help in future classes

29 CSE 303 - Winter 2010

