
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 22 – Unit testing, stubs, and specifications

Where We Are

  Starting to learn basic software engineering

-  In hw4: learned to break system into components

-  Golden rule: write as little code as possible and test!

  Today: software development process

  In particular

-  Minimal specifications

-  Unit testing and stubs

2 CSE 303 - Winter 2010

Motivation

  If you are writing a tiny, simple piece of software for
yourself... you don't really need any process. You can
just start throwing some code together

  But what if you were in charge of writing the software
for a nuclear power plant?

-  You have 20 software developers to help you

-  How would you manage the overall project?

-  How would you go about figuring out what you are
supposed to develop?

-  How would you ensure that everyone knows what they
are supposed to do?

-  How would you organize everyone's efforts?

3 CSE 303 - Winter 2010

Software Development Process

  The software dev. process is there to guide you

  Main steps involved in building a system

-  Requirements analysis

-  Specification

-  Design (high-level then detailed)

-  Implementation

-  Testing

-  Documentation

-  Maintenance

4 CSE 303 - Winter 2010

Software Development Process

  Requirements analysis

-  What are we supposed to build? What do our
customers need?

  Specification

-  Precise description of provided functionality

-  How precise? Depends on what we are building

  Design (high-level then detailed)

-  Define the internal software architecture

-  Break system into components
  Modules, interfaces, classes, etc.

  Need to write specifications for each component
5 CSE 303 - Winter 2010

Software Development Process

  Implementation

-  Write the code and perform simple tests

  Testing

-  Extensive testing of components & whole system

  Documentation

-  All steps in the process must be documented

-  User guide, developer's guide, etc.

  Maintenance

-  Basically that means fixing bugs and working on
release 1256 of the same product

6 CSE 303 - Winter 2010

Software Development Process

  Main steps involved in building a system

-  Requirements analysis

-  Specification

-  Design

-  Implementation

-  Testing

-  Documentation

-  Maintenance

  Order of steps varies, cycles are possible and common

  How formal? Depends on what you're building

Remember: the software process
  Guides your efforts
  Helps you clarify your thoughts
  Helps you communicate your ideas
  It is there to help you!
  You can view it as kind of tool

7 CSE 303 - Winter 2010

Specification

  You need to write specs for entire software system
but also for each module

-  Man pages are basically specifications

  Writing a complete specification is often as difficult as
writing code (even worse when trying to be formal)

  But, partial specification is better than none

  Clear specification

-  Guides implementation, tests, integration, code reuse

-  Acts as a contract between client and implementor

  Iterating is normal: going back and fixing specs

8 CSE 303 - Winter 2010

Function Specification

  We will focus on function specifications

  Specification acts as a contract

-  If client meets its obligations (precondition)

-  Implementor meets its obligation (postcondition)

  Specification helps decoupling

-  Client need not know implementation details

-  Implementor can change implementation details

-  Implementor need not know details of how the function
will be used

-  Specifications should thus be declarative
  Describe what a function does but not how it does it

9 CSE 303 - Winter 2010

Specification Example

  Something simple like a linked list of strings

  Let's write an informal specification for

void insert(Node** head, char* val);

10 CSE 303 - Winter 2010

Specification First Attempt

/**
* Inserts a value into the list
* @param head address of pointer to
* the first element in the list
* @param val new string to insert
* @return nothing
*/
void insert(Node** head, char* val);

11 CSE 303 - Winter 2010

A Better Specification

/**
* Short description: Inserts a value into a list.
* Precondition:
* head must be valid address of pointer to beginning of list.
* List is sorted in alphabetical order.
* Postcondition:
* Modifies (*head).
* Inserts val into list pointed to by (*head)
* Does not check for duplicates.
* If val is NULL, does nothing
* Makes a copy of the inserted string.
* Output list is sorted in alphabetical order.
* @throw nothing (C++ only)
* @param head address of pointer to the first element in the list
* @param value string to insert into the list
* @return nothing
*/
void insert(Node** head, char* val);

12 CSE 303 - Winter 2010

Minimum Function Specification

  Short description: one line

  State precondition

-  Assumptions about the state of the system in which the
function can be called

  Ex: units are inches, list has no cycles, ...

-  In your code: never trust caller, check preconditions
  Sometimes, it does not make sense to check preconditions (e.g.,

cannot test that units are inches)

  State postcondition

-  What the function does when the precondition holds

13 CSE 303 - Winter 2010

Precondition

  Precondition is an obligation on the client (i.e., the caller of
the function)

-  If precondition is violated, the function is allowed to do
anything including setting the computer on fire

  Note: for invalid inputs, better to specify what the function
does in the postcondition rather than use preconditions

-  Example: when val is NULL, insert does nothing

-  Use the precondition only as a last resort

-  When it does not make sense to handle invalid inputs

  Ex: assume head holds a valid address

-  Sometimes, use precondition for performance too
  Ex: assumes input list is sorted

14 CSE 303 - Winter 2010

Postcondition

  Describe all input parameters (not really postcondition)

  Identify all objects that can potentially be modified

-  Gobal vars, data members, arguments

-  Sometimes this is called the “frame condition”

  Describe what the function does

-  Describe what the function returns
  Through return value or by modifying arguments

  Include any thrown exceptions (C++ only)

-  Describe all side effects

  Condition that will hold true after function execution

  Ex: how it modifies data members, what it writes to a file

15 CSE 303 - Winter 2010

Testing

  Goal: Verification and validation

-  Does the system work?

-  Does it do what it is supposed to do?

-  Increase our confidence in the system

  How do we know when we are done?

-  Standard coverage metrics
  Execute each statement at least once

  Execute each branch or path at least once

-  Rule of thumb: there are as many bugs left in the
system as you are still finding... never done

16 CSE 303 - Winter 2010

Two Basic Types of Tests

  Black box tests: very useful in practice!

-  Test without looking at implementation

-  Someone else than implementor shoud write them

-  Design test cases in terms of specification
  All tests must satisfy preconditions

  Divide inputs into equivalence classes

-  Need at least one test for each equivalence class
-  Also test boundaries of equivalence classes

17 CSE 303 - Winter 2010

Black Box Test Example

/**
* Precondition: none
* Postcondition:
* If x is greater than zero, returns the square

root of x. Otherwise, returns -1
* @param x the number for which to compute sqrt
* @return the square root of x or -1
*/
double sqrt(double x);

Some good tests: -20, -1, 0, 1, +20

Other tests: case where sqrt(x) < x, sqrt(x) > x, perfect squares, others

18 CSE 303 - Winter 2010

Two Basic Types of Tests

  White box tests

-  Take implementation into account

-  Easier to ensure good coverage

  All statements at least once (statement coverege)

  All branches at least once (decision coverage)

  All possible paths at least once (path coverage)

-  Common sense

  Try to test all branches at least once

19 CSE 303 - Winter 2010

More Types of Tests

  Unit testing

-  Test one or a few functions at the time

-  This is what you will do in hw6

  Integration testing

-  Combining units together

  System testing

-  The whole thing

  Perform them all as your develop the system

20 CSE 303 - Winter 2010

Hugely Important in Practice

  Regression tests

-  Whole battery of tests that exercise as many features
of the system as possible

-  Rerun all tests automatically
  Every time you add a feature

  Every time you fix a bug

  They help verify that everything still works

21 CSE 303 - Winter 2010

Stubs

  How to test a “unit” when the other code

-  Does not exist yet

-  Is buggy

-  Is large and slow

  Answer: create a “fake implementation” of the
missing pieces

-  Just good enough for the tests

-  As small as possible, so often called stub

22 CSE 303 - Winter 2010

Summary

  Software dev. involves a certain number of steps

-  Carefully think what you need to build

-  Carefully think how to build it

-  Prepare tests based on your specs

-  Implement, test, and document

  In assignement 6

-  Your partner and you will agree on a spec

-  One person writes the code

-  Other person prepares black-box tests

-  And then you switch

23 CSE 303 - Winter 2010

Readings

  No readings

24 CSE 303 - Winter 2010

