CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska

Winter 2010
Lecture 20 — C++: Templates and STL

Where We Are

« We are almost done talking about C++
- Still need to talk about templates and STL

« S0 what are we going to do for the rest of the quarter?

- Software engineering basics
« Unit testing, stubs, specifications
 Writing robust and readable code
- Societal implications

- A few extra things: threads and (maybe) profilers

Introduction to Templates

« Motivation: often want to perform the same
operations on different data types

« Example: storing data in a linked list

- Solution 1: Create a new list class for each data type
we want to store in a list

- Solution 2: Force all data types to have a common
ancestor X and create a list of X (Java solution)

- Solution 3: Create a generic list class, and have the
compiler use that generic class as a template to
generate code for all the list classes we need

« Note: this is DIFFERENT from Java generics

C++ Templates Basic ldea

« With a single code segment, define a whole group
of related functions or classes

. From the template, the compiler generates the
code for all actual functions or classes

- C++ templates are said to be implemented “by
expansion’

« The generated code is then compiled

Syntax for Class Templates

o Class definition in .h file

template < class T >

class MyClass {
// Here use T like ordinary type
bool test (T item) ;

};

o Function definitions in the . cc file

template < class T >
bool MyClass<T>::test (T item) {

// here use T like ordinary type
I

Syntax for Using Class Templates

MyClass<int> examplel;

examplel.test (3);

MyClass<char> exampleZ2;

exampleZ2.test ('b'");

o Full example in file template.cc

Standard Template Library

o C++ library of:

- Basic data structures (i.e., container classes)
. Lists, Maps, Sets, etc.

- Iterators for traversing these containers
. lterators are a generalization of pointers

- And basic algorithms to operate over various containers:
sort, reverse, efc.

« Algorithms are decoupled from specific containers
. They are templates parameterized by the type of iterator

« We will only consider two concrete examples
- 1list in lecture and map in assignment

Example: List of Integers

#include <list>
[...]

list<int> my list;
for (int 1 = 0; 1 < 10; i++) {
my list.push back(1);

list<int>::const 1terator 1i;
for (1 = my list.begin();
1 !'= my list.end(); ++1) {
cout << “Element 1s “ << (*1) << endl;
}
« Other example in file main.cc

Java Generics

. Very different from C++ templates and STL

- EXx: generic collections classes are based on std Java
collections classes where everything is a container of Objects

« Java generics are implemented by “type erasure”

- Compiler reads type information

- Compiler performs type checks

- Compiler automatically generates type casts
- Compiler erases any type information

- So the resulting bytecode is the same as without using
generics, but traditional collections classes

. Goal in Java was backward compatibility

No Templates nor STL on Final

« Templates and STL are an advanced topic

« We overview them briefly because they are very
frequently used in C++

o But there will be no question about templates nor
STL on the final

» Carefully study the code that accompanies today's
lecture

. Standard Template Library Reference

