
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 20 – C++: Templates and STL

Where We Are

  We are almost done talking about C++

-  Still need to talk about templates and STL

  So what are we going to do for the rest of the quarter?

-  Software engineering basics

  Unit testing, stubs, specifications

  Writing robust and readable code

-  Societal implications

-  A few extra things: threads and (maybe) profilers

2 CSE 303 - Winter 2010

Introduction to Templates

  Motivation: often want to perform the same
operations on different data types

  Example: storing data in a linked list

-  Solution 1: Create a new list class for each data type
we want to store in a list

-  Solution 2: Force all data types to have a common
ancestor X and create a list of X (Java solution)

-  Solution 3: Create a generic list class, and have the
compiler use that generic class as a template to
generate code for all the list classes we need

  Note: this is DIFFERENT from Java generics

3 CSE 303 - Winter 2010

C++ Templates Basic Idea

  With a single code segment, define a whole group
of related functions or classes

  From the template, the compiler generates the
code for all actual functions or classes

-  C++ templates are said to be implemented “by
expansion”

  The generated code is then compiled

4 CSE 303 - Winter 2010

Syntax for Class Templates

  Class definition in .h file

template < class T >
class MyClass {
 // Here use T like ordinary type
 bool test(T item);
};

  Function definitions in the .cc file

template < class T >
bool MyClass<T>::test(T item) {
 // here use T like ordinary type
};

5 CSE 303 - Winter 2010

Syntax for Using Class Templates

MyClass<int> example1;

example1.test(3);

MyClass<char> example2;

example2.test('b');

...

  Full example in file template.cc

6 CSE 303 - Winter 2010

Standard Template Library

  C++ library of:

-  Basic data structures (i.e., container classes)
  Lists, Maps, Sets, etc.

-  Iterators for traversing these containers
  Iterators are a generalization of pointers

-  And basic algorithms to operate over various containers:
sort, reverse, etc.

  Algorithms are decoupled from specific containers

  They are templates parameterized by the type of iterator

  We will only consider two concrete examples

-  list in lecture and map in assignment

7 CSE 303 - Winter 2010

Example: List of Integers

#include <list>
[...]

 list<int> my_list;
 for (int i = 0; i < 10; i++) {
 my_list.push_back(i);
 }

 list<int>::const_iterator i;
 for (i = my_list.begin();
 i != my_list.end(); ++i) {
 cout << “Element is “ << (*i) << endl;
 }
  Other example in file main.cc

8 CSE 303 - Winter 2010

Java Generics

  Very different from C++ templates and STL

-  Ex: generic collections classes are based on std Java
collections classes where everything is a container of Objects

  Java generics are implemented by “type erasure”

-  Compiler reads type information

-  Compiler performs type checks

-  Compiler automatically generates type casts

-  Compiler erases any type information

-  So the resulting bytecode is the same as without using
generics, but traditional collections classes

  Goal in Java was backward compatibility

9 CSE 303 - Winter 2010

No Templates nor STL on Final

  Templates and STL are an advanced topic

  We overview them briefly because they are very
frequently used in C++

  But there will be no question about templates nor
STL on the final

10 CSE 303 - Winter 2010

Readings

  Carefully study the code that accompanies today's
lecture

  Standard Template Library Reference

-  http://www.sgi.com/tech/stl/

11 CSE 303 - Winter 2010

